A259663 Square array T(n,k) read by antidiagonals upwards: "Dropping Times" in reduced Collatz sequences. (See "Comments" for definitions and explanation.)
1, 13, 11, 5, 19, 7, 53, 3, 55, 47, 21, 35, 87, 79, 31, 213, 99, 23, 143, 223, 191, 85, 483, 407, 15, 95, 319, 127, 853, 739, 663, 271, 351, 63, 895, 767, 341, 1251, 1175, 1807, 863, 1599, 1407, 1279, 511
Offset: 2
Examples
Array starts T(2,1): n\k 1 2 3 4 5 6 7 8 9 ... 2: 1 11 7 47 31 191 127 767 511 3: 13 19 55 79 223 319 895 1279 3583 4: 5 3 87 143 95 63 1407 2303 1535 5: 53 35 23 15 351 1599 2431 4351 13823 6: 21 99 407 271 863 575 383 255 22015 7: 213 483 663 1807 3935 2623 12671 8447 5631 8: 85 739 1175 783 5983 14911 20863 57599 38399 9: 853 1251 2199 6927 10079 6719 4479 90367 235007 10: 341 227 151 11023 18271 55871 37247 24831 366079 For n >= 4: e.g., n=4, so j == 2 (mod 4). Select j=6, i=2 to find T(4,4). T(4,6) = 2^6 - 1 = 63. 2^(6-2)*3^2 - 1 mod 2^(4+6-2) = 143 mod 256 = T(4,4) = 143. Now instead select j=10, i=6 to find T(4,4). T(4,10) = 2^10 - 1 = 1023. 2^(10-6)*3^6 - 1 mod 2^(4+10-6) = 11663 mod 256 = 143. - _Bob Selcoe_, Jul 15 2017
Programs
-
PARI
T(n, k) = if (n==2, if (k%2, 2^k-1, 3*2^k-1), if (n==3, if (k%2, 7*2^k-1, 5*2^k-1), mj = 2^(n-3) % 2^(n-2); mk = k % 2^(n-2); (2^k*3^(mj-mk) - 1) % 2^(n+k))); tabl(nn) = matrix(nn, nn, n, k, T(n+1,k)); \\ Michel Marcus, Jul 10 2018
Formula
From Bob Selcoe, Jul 15 2017: (Start)
The array is constructed by the following:
T(2,k) = 2^k-1 when k is odd, T(2,k) = 3*2^k-1 when k is even; i.e., A083420((k-1)/2) and A198693(k/2) interleaved.
T(3,k) = 7*2^k-1 when k is odd; T(3,k) = 5*2^k-1 when k is even; i.e., A206372((k-1)/2) and A156760(k/2) interleaved.
For n >= 4: T(n,j) = 2^j-1, j == 2^(n-3) (mod 2^(n-2)); T(n,j-i) = least residue of 2^(j-i)*3^i - 1 mod 2^(n+j-i), 1 <= i < j. (See Example.)
(End)
Comments