A316625
Terms in A259663, in ascending order.
Original entry on oeis.org
1, 3, 5, 7, 11, 13, 15, 19, 21, 23, 31, 35, 47, 53, 55, 63, 79, 85, 87, 95, 99, 127, 143, 151, 191, 213, 223, 227, 255, 271, 319, 341, 351, 383, 407, 483, 511, 575, 663, 739, 767, 783, 853, 863, 895, 1023, 1175, 1251, 1279, 1365, 1407, 1535, 1599, 1807, 1887, 2047
Offset: 1
k=5, i=1 -- terms are least residues of 3^j*2^(12-j)-1 mod 2^(17-j), 0 <= j < 12:
j=0: 4096-1 mod 131072 = 4095;
j=1: 3*2048-1 mod 65536 = 6143;
j=2: 9*1024-1 mod 32768 = 9215;
j=3: 27*512-1 mod 16384 = 13823;
j=4: 81*256-1 mod 8192 = 20735 mod 8192 == 4351;
j=5: 243*128-1 mod 4096 = 31103 mod 4096 == 2431;
j=6: 729*64-1 mod 2048 = 46655 mod 2048 == 1599;
j=7: 2187*32-1 mod 1024 = 69983 mod 1024 == 351;
j=8: 6561*16-1 mod 512 = 104975 mod 512 == 15;
j=9: 19683*8-1 mod 256 = 157463 mod 256 == 23;
j=10: 59049*4-1 mod 128 = 236195 mod 128 == 35;
j=11: 177147*2-1 mod 64 = 354293 mod 64 == 53.
Note: k=5, i=0 is equivalent to starting with j=0: 15 mod 512.
A328037
Irregular triangle T(n,k) read by rows: "quotient trajectories" in reduced Collatz sequences; i.e., T(n,k) = q-value(A256598(n,k)) where q-value(z) = (z - A259663(m,j))/2^(m+j) and (m,j) is the unique pair such that z == A259663(m,j) (mod 2^(m+j)). (See Comments for definitions.)
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 1, 0, 2, 0, 0, 0, 1, 5, 0, 0, 2, 6, 20, 15, 5, 17, 3, 9, 29, 2, 8, 24, 74, 27, 5, 15, 47, 17, 53
Offset: 0
Triangle starts:
0;
0, 0, 0;
0, 0;
0, 0, 2, 0, 0, 0;
1, 0, 0, 2, 0, 0, 0;
0, 2, 0, 0, 0;
0, 0, 0;
0, 0, 0, 0, 0, 0;
2, 0, 0, 0;
0, 1, 0, 2, 0, 0, 0;
0, 0;
0, 0, 0, 0, 0;
3, 0, 1, 0, 2, 0, 0, 0;
...
n=13 starts with 27 = T"(2,2)_1 and takes 41 steps: 1, 5, 0, 0, 2, 6, 20, 15, 5, ..., 0, 0, 0.
Row n=12 maps to the reduced sequence n=12 in A256598: 25 -> 19 -> 29 -> 11 -> 17 -> 13 -> 5 -> 1, which is T"(2,1)_3 -> T"(3,2)_0 -> T"(3,1)_1 -> T"(2,2)_0 -> T"(2,1)_2 -> T"(3,1)_0 -> T"(4,1)_0 -> T"(2,1)_0.
-
Tdt(n, k) = if (n==2, if (k%2, 2^k-1, 3*2^k-1), if (n==3, if (k%2, 7*2^k-1, 5*2^k-1), mj = 2^(n-3) % 2^(n-2); mk = k % 2^(n-2); (2^k*3^(mj-mk) - 1) % 2^(n+k))); \\ A259663
qvalue(m) = {my(line = 2, i, md); while (1, i = line; for (j=1, line-1, md = Tdt(i, j); if (m % (2^(i+j)) == md % (2^(i+j)), return((m-md)/2^(i+j))); i--;); line ++;);}
row(n) = {my(oddn = 2*n+1, vl = List(oddn), x); while (oddn != 1, x = 3*oddn+1; oddn = x >> valuation(x, 2); listput(vl, oddn)); my(v = Vec(vl)); for (i=1, #v, v[i] = qvalue(v[i]);); v;} \\ A256598
tabf(nn) = {for (n=0, nn, my(rown = row(n)); for (k=1, #rown, print1(rown[k], ", ")); print;);} \\ Michel Marcus, Oct 04 2019
A087445
Numbers that are congruent to 1 or 5 mod 12.
Original entry on oeis.org
1, 5, 13, 17, 25, 29, 37, 41, 49, 53, 61, 65, 73, 77, 85, 89, 97, 101, 109, 113, 121, 125, 133, 137, 145, 149, 157, 161, 169, 173, 181, 185, 193, 197, 205, 209, 217, 221, 229, 233, 241, 245, 253, 257, 265, 269, 277, 281, 289, 293, 301, 305, 313, 317, 325, 329
Offset: 1
-
[k:k in [1..330]| k mod 12 in [1,5]]; // Marius A. Burtea, Feb 08 2020
-
seq(6*(n-1)-(-1)^n,n=1..100); # Robert Israel, Jun 10 2015
-
LinearRecurrence[{1,1,-1},{1,5,13},70] (* or *) Rest[CoefficientList[ Series[x (1+4x+7x^2)/((1+x)(1-x)^2),{x,0,70}],x]] (* Harvey P. Dale, Jun 13 2011 *)
-
a(n)=(n-1)\2*12 + [5,1][n%2+1] \\ Charles R Greathouse IV, Jun 03 2015
A259614
Numbers congruent to {17,29} mod 36.
Original entry on oeis.org
17, 29, 53, 65, 89, 101, 125, 137, 161, 173, 197, 209, 233, 245, 269, 281, 305, 317, 341, 353, 377, 389, 413, 425, 449, 461, 485, 497, 521, 533, 557, 569, 593, 605, 629, 641, 665, 677, 701, 713, 737, 749, 773, 785, 809, 821, 845, 857, 881, 893, 917, 929, 953
Offset: 1
A327283
Irregular triangle T(n,k) read by rows: "residual summands" in reduced Collatz sequences (see Comments for definition and explanation).
Original entry on oeis.org
1, 1, 5, 1, 5, 19, 73, 347, 1, 7, 29, 103, 373, 1631, 1, 5, 23, 133, 1, 11, 1, 5, 19, 65, 451, 1, 7, 53, 1, 5, 31, 125, 503, 2533, 1, 1, 5, 19, 185, 1, 7, 29, 151, 581, 2255, 10861, 1, 5, 23, 85, 287, 925
Offset: 1
Triangle starts:
1;
1, 5;
1;
1, 5, 19, 73, 347;
1, 7, 29, 103, 373, 1631;
1, 5, 23, 133;
1, 11;
1, 5, 19, 65, 451;
1, 7, 53;
1, 5, 31, 125, 503, 2533;
1;
1, 5, 19, 185;
1, 7, 29, 151, 581, 2255, 10861;
...
T(5,4)=103 because R_9(4) = 13; the number of halving steps from R_9(0) to R_9(4) is 6, and 13 = (81*9 + 103)/64.
Showing 1-5 of 5 results.
Comments