A259677 Octagonal numbers (A000567) that are semiprimes (A001358).
21, 65, 133, 341, 481, 1541, 4033, 5461, 6533, 8321, 11041, 13333, 14981, 31621, 38081, 48133, 56033, 79381, 83333, 97921, 109061, 111361, 133141, 188501, 197633, 206981, 219781, 229633, 256961, 282133, 293281, 328021, 340033, 360533, 416641, 481601, 556421
Offset: 1
Keywords
Examples
The octagonal number 21 is in the sequence because 21 = 3 * 7.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
Programs
-
Magma
IsSemiprime:=func
; [s: n in [2..500] | IsSemiprime(s) where s is n*(3*n-2) ]; // Vincenzo Librandi, Jul 04 2015 -
Mathematica
a={}; Do[If[PrimeOmega[n (3 n - 2)]==2, AppendTo[a, n(3 n - 2)]], {n, 1, 200}]; a (* Vincenzo Librandi, Jul 04 2015 *) Select[PolygonalNumber[8,Range[500]],PrimeOmega[#]==2&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 15 2019 *)
-
PARI
pg(m, n) = (n^2*(m-2)-n*(m-4))/2 \\ n-th m-gonal number select(n->bigomega(n)==2, vector(2000, n, pg(8, n)))