cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A129521 Numbers of the form p*q, p and q prime with q=2*p-1.

Original entry on oeis.org

6, 15, 91, 703, 1891, 2701, 12403, 18721, 38503, 49141, 79003, 88831, 104653, 146611, 188191, 218791, 226801, 269011, 286903, 385003, 497503, 597871, 665281, 721801, 736291, 765703, 873181, 954271, 1056331, 1314631, 1373653, 1537381
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 19 2007

Keywords

Comments

All terms are Fermat 4-pseudoprimes, i.e., satisfy 4^n == 4 (mod n). See A020136 and A122781.

Crossrefs

Subsequence of A006881, A129510, and A122781.
Intersection of A000384 and A001358, "hexagonal semiprimes". - Wesley Ivan Hurt, Jul 04 2013

Programs

  • Haskell
    a129521 n = p * (2 * p - 1) where p = a005382 n
    -- Reinhard Zumkeller, Nov 10 2013
  • Magma
    [2*n^2-n: n in [0..1000]|IsPrime(n) and IsPrime(2*n-1)]; // Vincenzo Librandi, Dec 27 2010
    
  • Mathematica
    p = Select[Prime[Range[155]], PrimeQ[2# - 1] &]; p (2p - 1) (* Robert G. Wilson v, Sep 11 2011 *)
  • PARI
    forprime(p=2,10000,q=2*p-1;if(isprime(q),print1(p*q,", ")))
    

Formula

a(n) = A005382(n)*A005383(n).

A259676 Heptagonal numbers (A000566) that are semiprimes (A001358).

Original entry on oeis.org

34, 55, 235, 403, 469, 697, 1177, 1651, 2059, 2839, 4141, 5221, 6943, 9211, 9517, 13213, 13579, 21949, 23377, 25351, 29539, 31753, 34633, 37027, 53071, 62173, 68641, 74563, 78943, 93799, 96727, 118483, 130759, 144841, 164737, 171217, 187279, 191407, 196981
Offset: 1

Views

Author

Colin Barker, Jul 03 2015

Keywords

Comments

For these semiprimes k*(5*k-3)/2, the corresponding k are listed in A114517.

Examples

			The heptagonal number 34 is in the sequence because 34 = 2 * 17.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func; [s: n in [2..300] | IsSemiprime(s) where s is n*(5*n-3) div 2]; // Vincenzo Librandi, Jul 04 2015
  • Mathematica
    a={}; Do[If[PrimeOmega[n (5 n - 3) / 2]==2, AppendTo[a, n(5 n - 3) / 2]], {n, 1, 200}]; a (* Vincenzo Librandi, Jul 04 2015 *)
    Select[PolygonalNumber[7,Range[300]],PrimeOmega[#]==2&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 07 2021 *)
  • PARI
    pg(m, n) = (n^2*(m-2)-n*(m-4))/2 \\ n-th m-gonal number
    select(n->bigomega(n)==2, vector(2000, n, pg(7, n)))
    

Formula

Equals A000566 intersect A001358.

A382231 Octagonal numbers that are the product of three distinct primes.

Original entry on oeis.org

645, 1045, 1281, 2465, 2821, 3201, 3605, 7701, 8965, 12545, 15841, 17633, 18565, 20501, 23585, 24661, 25761, 26885, 30401, 34133, 36741, 45141, 51221, 52801, 57685, 59361, 62785, 66305, 68101, 71765, 73633, 89441, 95765, 100101, 116033, 120801, 123221, 125665, 138245
Offset: 1

Views

Author

Massimo Kofler, Mar 19 2025

Keywords

Comments

All terms are odd numbers.

Examples

			645 is a term because 645=3*5*43 is a sphenic number and is the 15th octagonal number.
1045 is a term because 1045=5*11*19 is a sphenic number and is the 19th octagonal number.
1281 is a term because 1281=3*7*61 is a sphenic number and is the 21st octagonal number.
		

Crossrefs

Intersection of A007304 and A000567.
Cf. A259677.

Programs

  • Maple
    N:= 10^6: # for terms <= N
    isoct:= proc(n) issqr(1+3*n) and sqrt(1+3*n) mod 3 = 2 end proc:
    P:= select(isprime,[seq(i,i=3..N/15,2)]): nP:= nops(P):
    R:= NULL:
    for i from 1 to nP while P[i]*P[i+1]*P[i+2] <= N do
      for j from i+1 to nP while P[i]*P[j]*P[j+1] <= N do
        for k from j+1 to nP  do
          v:= P[i]*P[j]*P[k];
          if v > N then break fi;
          if isoct(v) then R:= R,v fi;
    od od od:
    sort([R]); # Robert Israel, Mar 19 2025
  • Mathematica
    Select[Table[n*(3*n-2), {n, 1, 220}], FactorInteger[#][[;;, 2]] == {1, 1, 1} &] (* Amiram Eldar, Mar 19 2025 *)
Showing 1-3 of 3 results.