cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259691 Triangle read by rows: T(n,k) number of arrangements of non-attacking rooks on an n X n right triangular board where the top rook is in row k (n >= 0, 1 <= k <= n+1).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 6, 3, 1, 15, 20, 12, 4, 1, 52, 74, 51, 20, 5, 1, 203, 302, 231, 104, 30, 6, 1, 877, 1348, 1116, 564, 185, 42, 7, 1, 4140, 6526, 5745, 3196, 1175, 300, 56, 8, 1, 21147, 34014, 31443, 18944, 7700, 2190, 455, 72, 9, 1
Offset: 0

Views

Author

N. J. A. Sloane, Jul 05 2015

Keywords

Comments

Another version of A056857.
See Becker (1948/49) for precise definition.
The case of n=k+1 corresponds to the empty board where there is no top rook. - Andrew Howroyd, Jun 13 2017
T(n-1,k) is the number of partitions of [n] where exactly k blocks contain their own index element. T(3,2) = 6: 134|2, 13|24, 13|2|4, 14|23, 1|234, 1|23|4. - Alois P. Heinz, Jan 07 2022

Examples

			Triangle begins:
    1;
    1,   1;
    2,   2,   1;
    5,   6,   3,   1;
   15,  20,  12,   4,  1;
   52,  74,  51,  20,  5, 1;
  203, 302, 231, 104, 30, 6, 1;
  ...
From _Andrew Howroyd_, Jun 13 2017: (Start)
For n=3 the 5 solutions with the top rook in row 1 are:
  x      x      x      x      x
  . .    . .    . .    . x    . x
  . . .  . . x  . x .  . . .  . . x
For n=3 the 6 solutions with the top rook in row 2 are:
  .      .      .      .      .      .
  x .    x .    x .    . x    . x    . x
  . . .  . x .  . . x  . . .  x . .  . . x
(End)
		

Crossrefs

First column is A000110.
Row sums are A000110(n+1).

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, 1,
         `if`(n<0, 1/m, m*b(n-1, m)+b(n-1, m+1)))
        end:
    T:= (n, k)-> k*b(n-k, k):
    seq(seq(T(n, k), k=1..n+1), n=0..10);  # Alois P. Heinz, Jan 07 2022
  • Mathematica
    T[n_, k_] := If[k>n, 1, k*Sum[Binomial[n-k, i]*k^i*BellB[n-k-i], {i, 0, n - k}]];
    Table[T[n, k], {n, 0, 10}, {k, 1, n+1}] // Flatten (* Jean-François Alcover, Jul 03 2018, after Andrew Howroyd *)
  • PARI
    bell(n) = sum(k=0, n, stirling(n, k, 2));
    T(n,k) = if(k>n, 1, k*sum(i=0,n-k, binomial(n-k,i) * k^i * bell(n-k-i)));
    for(n=0,6, for(k=1,n+1, print1(T(n,k),", ")); print) \\ Andrew Howroyd, Jun 13 2017

Formula

T(n,n+1) = 1, T(n,k) = k*Sum_{i=0..n-k} binomial(n-k,i) * k^i * Bell(n-k-i) for k<=n. - Andrew Howroyd, Jun 13 2017
From Alois P. Heinz, Jan 07 2022: (Start)
T(n,k) = k * A108087(n-k,k) for 1 <= k <= n.
Sum_{k=1..n+1} k * T(n,k) = A350589(n+1).
Sum_{k=1..n+1} (k+1) * T(n,k) = A347420(n+1). (End)

Extensions

Name edited and terms a(28) and beyond from Andrew Howroyd, Jun 13 2017