A259691 Triangle read by rows: T(n,k) number of arrangements of non-attacking rooks on an n X n right triangular board where the top rook is in row k (n >= 0, 1 <= k <= n+1).
1, 1, 1, 2, 2, 1, 5, 6, 3, 1, 15, 20, 12, 4, 1, 52, 74, 51, 20, 5, 1, 203, 302, 231, 104, 30, 6, 1, 877, 1348, 1116, 564, 185, 42, 7, 1, 4140, 6526, 5745, 3196, 1175, 300, 56, 8, 1, 21147, 34014, 31443, 18944, 7700, 2190, 455, 72, 9, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 2, 2, 1; 5, 6, 3, 1; 15, 20, 12, 4, 1; 52, 74, 51, 20, 5, 1; 203, 302, 231, 104, 30, 6, 1; ... From _Andrew Howroyd_, Jun 13 2017: (Start) For n=3 the 5 solutions with the top rook in row 1 are: x x x x x . . . . . . . x . x . . . . . x . x . . . . . . x For n=3 the 6 solutions with the top rook in row 2 are: . . . . . . x . x . x . . x . x . x . . . . x . . . x . . . x . . . . x (End)
Links
- Alois P. Heinz, Rows n = 0..140, flattened (first 49 rows from Andrew Howroyd)
- H. W. Becker, Rooks and rhymes, Math. Mag., 22 (1948/49), 23-26. See Table II.
- H. W. Becker, Rooks and rhymes, Math. Mag., 22 (1948/49), 23-26. [Annotated scanned copy]
- Fufa Beyene, Jörgen Backelin, Roberto Mantaci, and Samuel A. Fufa, Set Partitions and Other Bell Number Enumerated Objects, J. Int. Seq., Vol. 26 (2023), Article 23.1.8.
- Giulio Cerbai, Modified ascent sequences and Bell numbers, arXiv:2305.10820 [math.CO], 2023. See p. 17.
Crossrefs
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n=0, 1, `if`(n<0, 1/m, m*b(n-1, m)+b(n-1, m+1))) end: T:= (n, k)-> k*b(n-k, k): seq(seq(T(n, k), k=1..n+1), n=0..10); # Alois P. Heinz, Jan 07 2022
-
Mathematica
T[n_, k_] := If[k>n, 1, k*Sum[Binomial[n-k, i]*k^i*BellB[n-k-i], {i, 0, n - k}]]; Table[T[n, k], {n, 0, 10}, {k, 1, n+1}] // Flatten (* Jean-François Alcover, Jul 03 2018, after Andrew Howroyd *)
-
PARI
bell(n) = sum(k=0, n, stirling(n, k, 2)); T(n,k) = if(k>n, 1, k*sum(i=0,n-k, binomial(n-k,i) * k^i * bell(n-k-i))); for(n=0,6, for(k=1,n+1, print1(T(n,k),", ")); print) \\ Andrew Howroyd, Jun 13 2017
Formula
T(n,n+1) = 1, T(n,k) = k*Sum_{i=0..n-k} binomial(n-k,i) * k^i * Bell(n-k-i) for k<=n. - Andrew Howroyd, Jun 13 2017
From Alois P. Heinz, Jan 07 2022: (Start)
T(n,k) = k * A108087(n-k,k) for 1 <= k <= n.
Sum_{k=1..n+1} k * T(n,k) = A350589(n+1).
Sum_{k=1..n+1} (k+1) * T(n,k) = A347420(n+1). (End)
Extensions
Name edited and terms a(28) and beyond from Andrew Howroyd, Jun 13 2017
Comments