A056857
Triangle read by rows: T(n,c) = number of successive equalities in set partitions of n.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 5, 6, 3, 1, 15, 20, 12, 4, 1, 52, 75, 50, 20, 5, 1, 203, 312, 225, 100, 30, 6, 1, 877, 1421, 1092, 525, 175, 42, 7, 1, 4140, 7016, 5684, 2912, 1050, 280, 56, 8, 1, 21147, 37260, 31572, 17052, 6552, 1890, 420, 72, 9, 1, 115975, 211470, 186300, 105240, 42630, 13104, 3150, 600, 90, 10, 1
Offset: 1
Winston C. Yang (winston(AT)cs.wisc.edu), Aug 31 2000
For example {1, 2, 1, 2, 2, 3} is a set partition of {1, 2, 3, 4, 5, 6} and has 1 successive equality, at i = 4.
Triangle begins:
1;
1, 1;
2, 2, 1;
5, 6, 3, 1;
15, 20, 12, 4, 1;
52, 75, 50, 20, 5, 1;
203, 312, 225, 100, 30, 6, 1;
...
From _Paul Barry_, Apr 23 2009: (Start)
Production matrix is
1, 1;
1, 1, 1;
1, 2, 1, 1;
1, 3, 3, 1, 1;
1, 4, 6, 4, 1, 1;
1, 5, 10, 10, 5, 1, 1;
1, 6, 15, 20, 15, 6, 1, 1;
1, 7, 21, 35, 35, 21, 7, 1, 1;
1, 8, 28, 56, 70, 56, 28, 8, 1, 1; ... (End)
- W. C. Yang, Conjectures on some sequences involving set partitions and Bell numbers, preprint, 2000. [Apparently unpublished]
- Alois P. Heinz, Rows n = 1..141, flattened
- H. W. Becker, Rooks and rhymes, Math. Mag., 22 (1948/49), 23-26. See Table III.
- H. W. Becker, Rooks and rhymes, Math. Mag., 22 (1948/49), 23-26. [Annotated scanned copy]
- Fufa Beyene, Jörgen Backelin, Roberto Mantaci, and Samuel A. Fufa, Set Partitions and Other Bell Number Enumerated Objects, J. Int. Seq., Vol. 26 (2023), Article 23.1.8.
- A. Hennessy and Paul Barry, Generalized Stirling Numbers, Exponential Riordan Arrays, and Orthogonal Polynomials, J. Int. Seq. 14 (2011) # 11.8.2, Corollary 17.
- G. Hurst and A. Schultz, An elementary (number theory) proof of Touchard's congruence, arXiv:0906.0696v2 [math.CO], 2009.
- A. O. Munagi, Set partitions with successions and separations, Intl. J. Math. Math. Sci. 2005 (2005) 451-463.
- M. Spivey, A generalized recurrence for Bell numbers, J. Int. Seq., 11 (2008), no. 2, Article 08.2.5
- W. Yang, Bell numbers and k-trees, Disc. Math. 156 (1996) 247-252.
-
with(combinat): A056857:=(n,c)->binomial(n-1,c)*bell(n-1-c): for n from 1 to 11 do seq(A056857(n,c),c=0..n-1) od; # yields sequence in triangular form; Emeric Deutsch, Nov 10 2006
with(linalg): # Yields sequence in matrix form:
A056857_matrix := n -> subs(exp(1)=1, exponential(exponential(
matrix(n,n,[seq(seq(`if`(j=k+1,j,0),k=0..n-1),j=0..n-1)])))):
A056857_matrix(8); # Peter Luschny, Apr 18 2011
-
t[n_, k_] := BellB[n-1-k]*Binomial[n-1, k]; Flatten[ Table[t[n, k], {n, 1, 11}, {k, 0, n-1}]](* Jean-François Alcover, Apr 25 2012, after Emeric Deutsch *)
-
B(n) = sum(k=0, n, stirling(n, k, 2));
tabl(nn)={for(n=1, nn, for(k=0, n - 1, print1(B(n - 1 - k) * binomial(n - 1, k),", ");); print(););};
tabl(12); \\ Indranil Ghosh, Mar 19 2017
-
from sympy import bell, binomial
for n in range(1,12):
print([bell(n - 1 - k) * binomial(n - 1, k) for k in range(n)]) # Indranil Ghosh, Mar 19 2017
-
def a(n): return (-1)^n / factorial(n)
@cached_function
def p(n, m):
R = PolynomialRing(QQ, "x")
if n == 0: return R(a(m))
return R((m + x)*p(n - 1, m) - (m + 1)*p(n - 1, m + 1))
for n in range(11): print(p(n, 0).list()) # Peter Luschny, Jun 18 2023
A347420
Number of partitions of [n] where the first k elements are marked (0 <= k <= n) and at least k blocks contain their own index.
Original entry on oeis.org
1, 2, 5, 14, 45, 164, 667, 2986, 14551, 76498, 430747, 2582448, 16403029, 109918746, 774289169, 5715471606, 44087879137, 354521950932, 2965359744447, 25749723493074, 231719153184019, 2157494726318234, 20753996174222511, 205985762120971168, 2106795754056142537
Offset: 0
a(3) = 14 = 5 + 5 + 3 + 1: 123, 12|3, 13|2, 1|23, 1|2|3, 1'23, 1'2|3, 1'3|2, 1'|23, 1'|2|3, 1'3|2', 1'|2'3, 1'|2'|3, 1'|2'|3'.
-
b:= proc(n, m) option remember;
`if`(n=0, 1, b(n-1, m+1)+m*b(n-1, m))
end:
a:= n-> add(b(i, n-i), i=0..n):
seq(a(n), n=0..25);
-
b[n_, m_] := b[n, m] = If[n == 0, 1, b[n - 1, m + 1] + m*b[n - 1, m]];
a[n_] := Sum[b[i, n - i], {i, 0, n}];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 11 2022, after Alois P. Heinz *)
A350647
Number T(n,k) of partitions of [n] having k blocks containing their own index when blocks are ordered with decreasing largest elements; triangle T(n,k), n>=0, 0<=k<=ceiling(n/2), read by rows.
Original entry on oeis.org
1, 0, 1, 1, 1, 1, 3, 1, 6, 7, 2, 16, 25, 10, 1, 73, 91, 35, 4, 298, 390, 163, 25, 1, 1453, 1797, 755, 128, 7, 7366, 9069, 3919, 737, 55, 1, 40689, 49106, 21485, 4304, 380, 11, 238258, 284537, 126273, 26695, 2696, 110, 1, 1483306, 1751554, 785435, 173038, 19272, 976, 16
Offset: 0
T(4,0) = 6: 432|1, 42|31, 42|3|1, 4|31|2, 4|3|21, 4|3|2|1.
T(4,1) = 7: 4321, 43|21, 43|2|1, 421|3, 4|321, 4|32|1, 41|3|2.
T(4,2) = 2: 431|2, 41|32.
T(5,2) = 10: 5431|2, 541|32, 531|42, 51|432, 521|4|3, 5|421|3, 5|42|31, 5|42|3|1, 51|4|32, 51|4|3|2.
T(5,3) = 1: 51|42|3.
Triangle T(n,k) begins:
1;
0, 1;
1, 1;
1, 3, 1;
6, 7, 2;
16, 25, 10, 1;
73, 91, 35, 4;
298, 390, 163, 25, 1;
1453, 1797, 755, 128, 7;
7366, 9069, 3919, 737, 55, 1;
40689, 49106, 21485, 4304, 380, 11;
238258, 284537, 126273, 26695, 2696, 110, 1;
...
T(2n,n) gives
A000124(n-1) for n>=1.
-
b:= proc(n, m) option remember; expand(`if`(n=0, 1, add(
`if`(j=n, x, 1)*b(n-1, max(m, j)), j=1..m+1)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..ceil(n/2)))(b(n, 0)):
seq(T(n), n=0..14);
-
b[n_, m_] := b[n, m] = Expand[If[n == 0, 1, Sum[
If[j == n, x, 1]*b[n-1, Max[m, j]], {j, 1, m+1}]]];
T[n_] := With[{p = b[n, 0]},
Table[Coefficient[p, x, i], {i, 0, Ceiling[n/2]}]];
Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Jan 11 2022, after Alois P. Heinz *)
A005490
Number of partitions of [n] where the first k elements are marked (0 <= k <= n-1) and at least k blocks contain their own index.
Original entry on oeis.org
1, 4, 13, 44, 163, 666, 2985, 14550, 76497, 430746, 2582447, 16403028, 109918745, 774289168, 5715471605, 44087879136, 354521950931, 2965359744446, 25749723493073, 231719153184018, 2157494726318233, 20753996174222510, 205985762120971167, 2106795754056142536
Offset: 1
a(3) = 13 = 5 + 5 + 3: 123, 12|3, 13|2, 1|23, 1|2|3, 1'23, 1'2|3, 1'3|2, 1'|23, 1'|2|3, 1'3|2', 1'|2'3, 1'|2'|3.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
b:= proc(n, m) option remember;
`if`(n=0, 1, b(n-1, m+1)+m*b(n-1, m))
end:
a:= n-> add(b(n-k, k), k=0..n-1):
seq(a(n), n=1..24); # Alois P. Heinz, Jan 05 2022
-
b[n_, m_] := b[n, m] = If[n == 0, 1, b[n - 1, m + 1] + m*b[n - 1, m]];
a[n_] := Sum[b[n - k, k], {k, 0, n - 1}];
Table[a[n], {n, 1, 24}] (* Jean-François Alcover, Apr 24 2022, after Alois P. Heinz *)
A350589
Sum over all partitions of [n] of the number of blocks containing their own index.
Original entry on oeis.org
0, 1, 3, 9, 30, 112, 464, 2109, 10411, 55351, 314772, 1903878, 12189432, 82274309, 583389847, 4332513061, 33607736990, 271657081128, 2283282938288, 19916981288017, 179994994948647, 1682624910161483, 16247280435775188, 161833756265886822, 1660836884761337248
Offset: 0
a(3) = 9 = 1 + 1 + 2 + 2 + 3: 123, 12|3, 13|2, 1|23, 1|2|3.
-
b:= proc(n, m) option remember;
`if`(n=0, 1, b(n-1, m+1)+m*b(n-1, m))
end:
a:= n-> add(b(n-i, i), i=1..n):
seq(a(n), n=0..25);
-
b[n_, m_] := b[n, m] = If[n == 0, 1, b[n - 1, m + 1] + m*b[n - 1, m]];
a[n_] := Sum[b[n - i, i], {i, 1, n}];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 11 2022, after Alois P. Heinz *)
A259697
Triangle read by rows: T(n,k) = number of rook patterns on n X n board where bottom rook is in column k.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 4, 5, 5, 1, 9, 12, 15, 15, 1, 24, 32, 42, 52, 52, 1, 76, 99, 129, 166, 203, 203, 1, 279, 354, 451, 575, 726, 877, 877, 1, 1156, 1434, 1786, 2232, 2792, 3466, 4140, 4140, 1, 5296, 6451, 7883, 9664, 11881, 14621, 17884, 21147, 21147
Offset: 0
Triangle begins:
1,
1, 1,
1, 2, 2,
1, 4, 5, 5,
1, 9, 12, 15, 15,
1, 24, 32, 42, 52, 52,
1, 76, 99, 129, 166, 203, 203,
...
From _Andrew Howroyd_, Jun 13 2017: (Start)
For n=3, the four solutions with the bottom rook in column 1 are:
. . . x
. . . x x . . .
x . . x . . . . . . . .
For n=3, the five solutions with the bottom rook in column 2 are:
. . x . x
. . x . . . . x . x
. x . . x . . x . . . . . . .
(End)
-
a11971[n_, k_] := Sum[Binomial[k, i]*BellB[n - k + i], {i, 0, k}];
T[, 0] = 1; T[n, k_] := Sum[a11971[i - 1, k - 1], {i, k, n}];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 07 2018, after Andrew Howroyd *)
-
A(N)={my(T=matrix(N,N),U=matrix(N,N));T[1,1]=1;U[1,1]=1;
for(n=2,N,for(k=1,n, T[n,k]=if(k==1,T[n-1,n-1],T[n-1,k-1]+T[n,k-1]); U[n,k]=T[n,k]+U[n-1,k]));U}
{my(T=A(10));for(n=0,length(T),for(k=0,n,print1(if(k==0,1,T[n,k]),", "));print)} \\ Andrew Howroyd, Jun 13 2017
-
from sympy import bell, binomial
def a011971(n, k): return sum([binomial(k, i)*bell(n - k + i) for i in range(k + 1)])
def T(n, k): return 1 if k==0 else sum([a011971(i - 1, k - 1) for i in range(k, n + 1)])
for n in range(10): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Jun 17 2017
A290724
Triangle read by rows: T(n,k) = number of arrangements of k non-attacking rooks on an n X n right triangular board with every square controlled by at least one rook.
Original entry on oeis.org
1, 1, 1, 0, 4, 1, 0, 2, 11, 1, 0, 0, 18, 26, 1, 0, 0, 6, 100, 57, 1, 0, 0, 0, 96, 444, 120, 1, 0, 0, 0, 24, 900, 1734, 247, 1, 0, 0, 0, 0, 600, 6480, 6246, 502, 1, 0, 0, 0, 0, 120, 8520, 39762, 21320, 1013, 1, 0, 0, 0, 0, 0, 4320, 90600, 219312, 70128, 2036, 1
Offset: 1
Triangle begins:
1;
1, 1;
0, 4, 1;
0, 2, 11, 1;
0, 0, 18, 26, 1;
0, 0, 6, 100, 57, 1;
0, 0, 0, 96, 444, 120, 1;
0, 0, 0, 24, 900, 1734, 247, 1;
0, 0, 0, 0, 600, 6480, 6246, 502, 1;
0, 0, 0, 0, 120, 8520, 39762, 21320, 1013, 1;
...
-
CoefficientList[Table[Sum[k! StirlingS2[m, k] StirlingS2[n + 1 - m, k + 1] x^(n - k), {m, 0, n}, {k, 0, Min[m, n - m]}], {n, 20}]/x, x] // Flatten (* Eric W. Weisstein, Feb 01 2024 *)
Showing 1-7 of 7 results.
Comments