cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259730 Primes p such that both 2*p - 3 and 3*p - 2 are prime.

Original entry on oeis.org

3, 5, 7, 11, 13, 23, 37, 43, 53, 67, 71, 113, 127, 137, 167, 181, 191, 193, 211, 251, 263, 331, 347, 373, 431, 433, 443, 461, 487, 587, 727, 751, 757, 907, 991, 1021, 1091, 1103, 1171, 1187, 1213, 1231, 1297, 1367, 1453, 1483, 1597, 1637, 1663, 1667, 1733
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 05 2015

Keywords

Comments

A010051(2*a(n) - 3) * A010051(3*a(n) - 2) = 1;
A259758(n) = (2*a(n) - 3) * (3*a(n) - 2).
Except for a(1)=3 this is the same sequence as primes p such that A288814(3*p) - A288814(2*p) = 5. - David James Sycamore, Jul 22 2017
Furthermore, (A288814(3*p)*A288814(2*p))/6 belongs to A259758. - David James Sycamore, Jul 23 2017

Crossrefs

Intersection of A063908 and A088878; A172287, A259758.

Programs

  • Haskell
    import Data.List.Ordered (isect)
    a259730 n = a259730_list !! (n-1)
    a259730_list = a063908_list `isect` a088878_list
    
  • Mathematica
    Select[Prime@ Range@ 270, Times @@ Boole@ Map[PrimeQ, {2 # - 3, 3 # - 2}] > 0 &] (* Michael De Vlieger, Jul 22 2017 *)
    Select[Prime[Range[300]],AllTrue[{2#-3,3#-2},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 08 2020 *)
  • PARI
    lista(nn) = forprime(p=3, nn, if(isprime(2*p-3) && isprime(3*p-2), print1(p, ", "))); \\ Altug Alkan, Jul 22 2017