A259758 Squarefree semiprimes of the form (2*p - 3) * (3*p - 2), p prime.
21, 91, 209, 589, 851, 2881, 7739, 10541, 16171, 26069, 29329, 75151, 95129, 110839, 165169, 194219, 216409, 220991, 264389, 374749, 411601, 653069, 717949, 829931, 1108969, 1119311, 1171741, 1269139, 1416689, 2059789, 3161729, 3374249, 3428459, 4924109
Offset: 1
Keywords
Examples
. n | p = A259730(n) | 2*p - 3 | 3*p - 2 | a(n) . ----+----------------+---------+---------+-------- . 1 | 3 | 3 | 7 | 21 . 2 | 5 | 7 | 13 | 91 . 3 | 7 | 11 | 19 | 209 . 4 | 11 | 19 | 31 | 589 . 5 | 13 | 23 | 37 | 851 . 6 | 23 | 43 | 67 | 2881 . 7 | 37 | 71 | 109 | 7739 . 8 | 43 | 83 | 127 | 10541 . 9 | 53 | 103 | 157 | 16171 . 10 | 67 | 131 | 199 | 26069 . 11 | 71 | 139 | 211 | 29329 . 12 | 113 | 223 | 337 | 75151 .
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a259758 n = (2 * p - 3) * (3 * p - 2) where p = a259730 n
-
Mathematica
Select[Table[(2p-3)(3p-2),{p,Prime[Range[200]]}],PrimeOmega[#]==2&&SquareFreeQ[ #]&] (* Harvey P. Dale, Jul 20 2022 *)
Comments