cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A259799 Array read by antidiagonals upwards: T(n,k) = number of partitions of k^n into n-th powers (n>=1, k>=0).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 5, 1, 1, 2, 5, 8, 7, 1, 1, 2, 7, 17, 19, 11, 1, 1, 2, 9, 36, 62, 43, 15, 1, 1, 2, 13, 88, 253, 258, 98, 22, 1, 1, 2, 19, 218, 1104, 1886, 1050, 220, 30, 1, 1, 2, 27, 550, 5082, 15772, 14800, 4365, 504, 42, 1, 1, 2, 40, 1413, 24119, 140549, 241582, 118238, 18012, 1116, 56
Offset: 1

Views

Author

N. J. A. Sloane, Jul 06 2015

Keywords

Examples

			The array begins:
  1, 1, 2, 3, 5, 7, 11, 15, 22, 30, ...
  1, 1, 2, 4, 8, 19, 43, 98, 220, 504, ...
  1, 1, 2, 5, 17, 62, 258, 1050, 4365, 18012, ...
  1, 1, 2, 7, 36, 253, 1886, 14800, 118238, ...
  1, 1, 2, 9, 88, 1104, 15772, 241582, ...
  ...
		

Crossrefs

T(n,n) gives A331402.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or i=1, 1,
          `if`(i=2, 1+iquo(n, i^k), b(n, i-1, k)+
          `if`(i^k>n, 0, b(n-i^k, i, k))))
        end:
    T:= (n, k)-> b(k^n, k, n):
    seq(seq(T(d-k, k), k=0..d-1), d=1..12);  # Alois P. Heinz, Jul 10 2015
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n==0 || i==1, 1, If[i==2, 1+Quotient[n, i^k], b[n, i-1, k] + If[i^k>n, 0, b[n-i^k, i, k]]]]; T[n_, k_] := b[k^n, k, n]; Table[ Table[ T[d-k, k], {k, 0, d-1}], {d, 1, 12}] // Flatten (* Jean-François Alcover, Jul 15 2015, after Alois P. Heinz *)

Extensions

More terms from Alois P. Heinz, Jul 10 2015

A259794 Number of partitions of n^5 into fifth powers.

Original entry on oeis.org

1, 1, 2, 9, 88, 1104, 15772, 241582, 3869852, 63689650, 1065023018, 17948615155, 303219868652, 5116273886322, 86004191773864, 1437703756689091, 23869446608034827, 393225674878151704, 6423761195925513669, 104014146020398166139, 1668870762057827073994
Offset: 0

Views

Author

N. J. A. Sloane, Jul 06 2015

Keywords

Crossrefs

A row of the array in A259799.

Formula

a(n) = [x^(n^5)] Product_{k>=1} 1/(1 - x^(k^5)). - Ilya Gutkovskiy, Jan 29 2018

Extensions

More terms from Alois P. Heinz, Jul 10 2015
Showing 1-2 of 2 results.