cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A037444 Number of partitions of n^2 into squares.

Original entry on oeis.org

1, 1, 2, 4, 8, 19, 43, 98, 220, 504, 1116, 2468, 5368, 11592, 24694, 52170, 108963, 225644, 462865, 941528, 1899244, 3801227, 7550473, 14889455, 29159061, 56722410, 109637563, 210605770, 402165159, 763549779, 1441686280, 2707535748, 5058654069, 9404116777
Offset: 0

Views

Author

Keywords

Comments

Is lim_{n->inf} a(n)^(1/n) > 1? - Paul D. Hanna, Aug 20 2002
The limit above is equal to 1 (see formula by Hardy & Ramanujan for A001156). - Vaclav Kotesovec, Dec 29 2016

Crossrefs

Entries with square index in A001156.
A row or column of the array in A259799.

Programs

  • Haskell
    a037444 n = p (map (^ 2) [1..]) (n^2) where
       p _      0 = 1
       p ks'@(k:ks) m | m < k     = 0
                      | otherwise = p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Aug 14 2011
  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          b(n, i-1) +`if`(i^2>n, 0, b(n-i^2, i)))
        end:
    a:= n-> b(n^2, n):
    seq(a(n), n=0..40);  # Alois P. Heinz, Apr 15 2013
  • Mathematica
    max=33; se = Series[ Product[1/(1-x^(k^2)), {k, 1, max}], {x, 0, max^2}]; a[n_] := Coefficient[se, x^(n^2)]; a[0] = 1; Table[a[n], {n, 0, max}] (* Jean-François Alcover, Oct 18 2011 *)

Formula

a(n) = A001156(n^2) = coefficient of x^(n^2) in the series expansion of Prod_{k>=1} 1/(1 - x^(k^2)).
a(n) ~ 3^(-1/2) * (4*Pi)^(-7/6) * Zeta(3/2)^(2/3) * n^(-7/3) * exp(2^(-4/3) * 3 * Pi^(1/3) * Zeta(3/2)^(2/3) * n^(2/3)) [Hardy & Ramanujan, 1917, modified from A001156]. - Vaclav Kotesovec, Dec 29 2016

A259792 Number of partitions of n^3 into cubes.

Original entry on oeis.org

1, 1, 2, 5, 17, 62, 258, 1050, 4365, 18012, 73945, 301073, 1214876, 4852899, 19187598, 75070201, 290659230, 1113785613, 4224773811, 15866483556, 59011553910, 217410395916, 793635925091, 2871246090593, 10297627606547, 36620869115355, 129166280330900
Offset: 0

Views

Author

N. J. A. Sloane, Jul 06 2015

Keywords

Crossrefs

A row of the array in A259799.
Cf. A279329.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          b(n, i-1) +`if`(i^3>n, 0, b(n-i^3, i)))
        end:
    a:= n-> b(n^3, n):
    seq(a(n), n=0..26);  # Alois P. Heinz, Jul 10 2015
  • Mathematica
    $RecursionLimit = 1000; b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1] + If[ i^3>n, 0, b[n-i^3, i]]]; a[n_] := b[n^3, n]; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Jul 15 2015, after Alois P. Heinz *)

Formula

a(n) = [x^(n^3)] Product_{j>=1} 1/(1-x^(j^3)). - Alois P. Heinz, Jul 10 2015
a(n) = A003108(n^3). - Vaclav Kotesovec, Aug 19 2015
a(n) ~ exp(4 * (Gamma(1/3)*Zeta(4/3))^(3/4) * n^(3/4) / 3^(3/2)) * (Gamma(1/3)*Zeta(4/3))^(3/4) / (24*Pi^2*n^(15/4)) [after Hardy & Ramanujan, 1917]. - Vaclav Kotesovec, Dec 29 2016

Extensions

More term from Alois P. Heinz, Jul 10 2015

A027601 Number of partitions of 4^n into n-th powers.

Original entry on oeis.org

5, 8, 17, 36, 88, 218, 550, 1413, 3679, 9622, 25297, 66737, 176537, 467998, 1242484, 3302290, 8784054, 23380494, 62260292, 165852148, 441922283, 1177759340, 3139292094, 8368647139, 22310795825, 59484268378, 158602342446, 422894828108, 1127630055693
Offset: 1

Views

Author

Keywords

Examples

			a(1)=5: Partitions of 4 into natural numbers: this is A000041(4)=5.
a(2)=8: Partitions of 4^2 into squares: 16 = 16, 9 4 1^3, 9 1^7, 4^4, 4^3 1^4, 4^2 1^8, 4 1^12, 1^16. - _N. J. A. Sloane_, Jul 06 2015
		

Crossrefs

A row or column of the array in A259799.

Formula

Equals A027609(n)+1

Extensions

a(27)-a(29) from Alois P. Heinz, Jul 10 2015

A259793 Number of partitions of n^4 into fourth powers.

Original entry on oeis.org

1, 1, 2, 7, 36, 253, 1886, 14800, 118238, 955639, 7750456, 62777522, 506272363, 4056634991, 32252971687, 254209569990, 1985108901344, 15352968310930, 117579612410477, 891596419221856, 6694250497509934, 49768995849050468, 366423320400440927, 2671969175372760210
Offset: 0

Views

Author

N. J. A. Sloane, Jul 06 2015

Keywords

Crossrefs

A row of the array in A259799.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          b(n, i-1) +`if`(i^4>n, 0, b(n-i^4, i)))
        end:
    a:= n-> b(n^4, n):
    seq(a(n), n=0..23);  # Alois P. Heinz, Jul 10 2015
  • Mathematica
    $RecursionLimit = 10^4; b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1] + If[i^4>n, 0, b[n-i^4, i]]]; a[n_] := b[n^4, n];  Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Dec 06 2016 after Alois P. Heinz *)

Formula

a(n) = [x^(n^4)] Product_{j>=1} 1/(1-x^(j^4)). - Alois P. Heinz, Jul 10 2015
a(n) = A046042(n^4). - Vaclav Kotesovec, Aug 19 2015
a(n) ~ exp(5 * (Gamma(1/4)*Zeta(5/4))^(4/5) * n^(4/5) / 2^(16/5)) * (Gamma(1/4)*Zeta(5/4))^(4/5) / (2^(47/10) * sqrt(5) * Pi^(5/2) * n^(26/5)) [after Hardy & Ramanujan, 1917]. - Vaclav Kotesovec, Dec 29 2016

Extensions

More terms from Alois P. Heinz, Jul 10 2015

A259794 Number of partitions of n^5 into fifth powers.

Original entry on oeis.org

1, 1, 2, 9, 88, 1104, 15772, 241582, 3869852, 63689650, 1065023018, 17948615155, 303219868652, 5116273886322, 86004191773864, 1437703756689091, 23869446608034827, 393225674878151704, 6423761195925513669, 104014146020398166139, 1668870762057827073994
Offset: 0

Views

Author

N. J. A. Sloane, Jul 06 2015

Keywords

Crossrefs

A row of the array in A259799.

Formula

a(n) = [x^(n^5)] Product_{k>=1} 1/(1 - x^(k^5)). - Ilya Gutkovskiy, Jan 29 2018

Extensions

More terms from Alois P. Heinz, Jul 10 2015

A259795 Number of partitions of n^6 into sixth powers.

Original entry on oeis.org

1, 1, 2, 13, 218, 5082, 140549, 4318937, 142230196, 4899174096, 173759831765, 6275666535508, 229029623773326, 8400986623582879, 308552577080828413, 11315799255444002331, 413526899811283611529, 15035521464541449037361, 543292158617220114038102, 19493012206795963934830852, 694033371089826655280448205, 24509565267500567956406898725
Offset: 0

Views

Author

N. J. A. Sloane, Jul 06 2015

Keywords

Crossrefs

A row of the array in A259799.

Formula

a(n) = [x^(n^6)] Product_{k>=1} 1/(1 - x^(k^6)). - Ilya Gutkovskiy, Jan 29 2018

Extensions

a(8)-a(14) from Alois P. Heinz, Jul 10 2015
a(15)-a(18) from Hiroaki Yamanouchi, Jul 11 2015
a(19)-a(21) from Vaclav Kotesovec, Dec 10 2016

A259796 Number of partitions of 3^n into n-th powers.

Original entry on oeis.org

3, 4, 5, 7, 9, 13, 19, 27, 40, 59, 88, 131, 196, 293, 439, 658, 987, 1479, 2218, 3327, 4989, 7483, 11224, 16836, 25253, 37878, 56817, 85224, 127836, 191753, 287628, 431441, 647161, 970741, 1456111, 2184166, 3276248, 4914371, 7371556, 11057334, 16586000
Offset: 1

Views

Author

N. J. A. Sloane, Jul 06 2015

Keywords

Examples

			n=3: partitions of 3^3 = 27 into cubes: 27 = 27, 8^3+1^3, 8^2+1^11, 8+1^19, 1^27, so a(3) = 5.
		

Crossrefs

A column of the array in A259799.

Extensions

More terms from Alois P. Heinz, Jul 10 2015

A331402 a(n) = [x^(n^n)] Product_{k>=1} 1 / (1 - x^(k^n)).

Original entry on oeis.org

1, 2, 5, 36, 1104, 140549, 82159688, 237700614212, 3591644060379486
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 16 2020

Keywords

Comments

Number of partitions of n^n into n-th powers.

Examples

			a(2) = 2 because we have [4] and [1, 1, 1, 1].
		

Crossrefs

Diagonal of A259799.
Cf. A145514.

Formula

a(n) = A259799(n,n).

Extensions

a(8)-a(9) from Giovanni Resta, Jan 17 2020

A259797 Number of partitions of 5^n into n-th powers.

Original entry on oeis.org

7, 19, 62, 253, 1104, 5082, 24119, 117016, 577219, 2881559, 14517349, 73646606, 375647872, 1924303223, 9890611989, 50972464766, 263251147564, 1361885016990, 7055002534314, 36586652345539, 189899006940570
Offset: 1

Views

Author

N. J. A. Sloane, Jul 06 2015

Keywords

Crossrefs

A column of the array in A259799.

Extensions

a(11)-a(21) from Alois P. Heinz, Jul 10 2015

A259798 Number of partitions of 6^n into n-th powers.

Original entry on oeis.org

11, 43, 258, 1886, 15772, 140549, 1311749, 12648913, 124896943, 1255339471, 12791342074, 131747261218, 1368576060800, 14314677403795
Offset: 1

Views

Author

N. J. A. Sloane, Jul 06 2015

Keywords

Crossrefs

A column of the array in A259799.

Extensions

a(9)-a(14) from Alois P. Heinz, Jul 11 2015
Showing 1-10 of 10 results.