A259909 n-th Wieferich prime to base prime(n), i.e., primes p such that p is the n-th solution of the congruence (prime(n))^(p-1) == 1 (mod p^2).
1093, 1006003, 40487
Offset: 1
Examples
a(1) = A001220(1) = 1093. a(2) = A014127(2) = 1006003. a(3) = A123692(3) = 40487.
References
- W. Keller, Prime solutions p of a^p-1 = 1 (mod p2) for prime bases a, Abstracts Amer. Math. Soc., 19 (1998), 394.
Links
- M. Aaltonen and K. Inkeri, Catalan's equation x^p - y^q and related congruences, Mathematics of Computation, Vol. 56 No. 193 (1991), 359-370.
- F. G. Dorais and D. Klyve, A Wieferich prime search up to p < 6.7*10^15, J. Integer Seq. 14 (2011), Art. 11.9.2, 1-14.
- R. Fischer, Thema: Fermatquotient B^(P-1) == 1 (mod P^2)
- W. Keller and J. Richstein, Fermat quotients q_p(a) that are divisible by p (Cached copy at the Wayback Machine).
- K. E. Kloss, Some Number-Theoretic Calculations, J. Research of the National Bureau of Standards-B. Mathematics and Mathematical Physics, Vol. 69B, No. 4 (1965), 335-336.
Programs
-
PARI
a(n) = my(i=0, p=2); while(i < n, if(Mod(prime(n), p^2)^(p-1)==1, i++; if(i==n, break({1}))); p=nextprime(p+1)); p
Comments