A259915 Least positive integer k such that phi(k) and sigma(k*n) are both squares, where phi(.) is Euler's totient function and sigma(m) is the sum of all positive divisors of m.
1, 85, 1, 273, 34, 85, 10, 364, 250, 17, 2, 2223, 204, 5, 34, 546, 10, 60, 680, 60, 10, 1, 5, 364, 48, 34, 40, 451, 136, 17, 10, 273, 2, 5, 2, 5089, 10570, 1020, 451, 10, 60, 5, 1970, 114, 114, 17, 2, 4446, 185, 8, 10, 17, 5, 546, 17, 285, 63, 204, 8, 540, 816, 5, 57, 147744, 2761, 1, 505, 451, 5, 1
Offset: 1
Keywords
Examples
a(2) = 85 since phi(85) = 64 = 8^2 and sigma(85*2) = 324 = 18^2. a(673) = 3451030792 since phi(3451030792) = 1564993600 = 39560^2 and sigma(3451030792*673) = sigma(2322543723016) = 4768807737600 = 2183760^2.
References
- Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..1000
- Zhi-Wei Sun, Checking the conjecture for r = a/b with a,b = 1..150
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
Programs
-
Mathematica
SQ[n_]:=IntegerQ[Sqrt[n]] sigma[n_]:=DivisorSigma[1,n] Do[k=0;Label[aa];k=k+1;If[SQ[EulerPhi[k]]&&SQ[sigma[k*n]],Goto[bb],Goto[aa]];Label[bb];Print[n, " ", k];Continue,{n,1,70}] (* Second program: *) Table[k = 1; While[Times @@ Boole@ Map[IntegerQ@ Sqrt@ # &, {EulerPhi@ k, DivisorSigma[1, k n]}] < 1, k++]; k, {n, 70}] (* Michael De Vlieger, May 04 2017 *)
-
Perl
use ntheory ":all"; for my $n (1..100) { my $k = 1; $k++ until is_power(euler_phi($k),2) && is_power(divisor_sum($k*$n),2); say "$n $k" } # Dana Jacobsen, May 04 2017
Comments