cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259973 Numbers n such that sigma(n) + product of divisors of n is prime.

Original entry on oeis.org

1, 2, 3, 5, 8, 11, 23, 27, 29, 32, 41, 50, 53, 57, 83, 85, 89, 111, 113, 128, 131, 161, 173, 179, 191, 215, 233, 237, 239, 245, 251, 265, 275, 281, 293, 319, 355, 359, 365, 391, 413, 419, 431, 437, 443, 453, 481, 485, 491, 493, 505, 509, 511, 535, 589, 593, 603
Offset: 1

Views

Author

K. D. Bajpai, Jul 15 2015

Keywords

Comments

If p is prime, then (sigma(p) + product of divisors of p) = 2*p+1. So the subsequence of primes gives the Sophie Germain primes: A005384. - Michel Marcus, Jul 16 2015

Examples

			a(5) = 8; divisors(8) = {1,2,4,8}; sum = 1+2+4+8 = 15; product = 1*2*4*8 = 64; 15 + 64 = 79, which is prime.
a(8) = 27; divisors(27) = {1,3,9,27}; sum = 1+3+9+27 = 40; product = 1*3*9*27 = 729; 40+729 = 769, which is prime.
		

Crossrefs

Programs

  • Magma
    [n: n in[1..1000] | IsPrime(&*Divisors(n) + SumOfDivisors(n))];
    
  • Mathematica
    Select[Range[2000], PrimeQ[DivisorSigma[1, #] + Times@@Divisors[#]] &]
  • PARI
    for(n=1, 1000, d=divisors(n); k=sigma(n) + prod(i=1,#d,d[i]); if(isprime(k),print1(n,", ")));