cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A260125 Primes having only {0, 2, 3} as digits.

Original entry on oeis.org

2, 3, 23, 223, 233, 2003, 2203, 2333, 3023, 3203, 3323, 20023, 20233, 20323, 20333, 22003, 22303, 23003, 23203, 23333, 30203, 30223, 30323, 32003, 32203, 32233, 32303, 32323, 33023, 33203, 33223, 200003, 200023, 200033, 200323, 203023, 203233, 203323
Offset: 1

Views

Author

Vincenzo Librandi, Jul 17 2015

Keywords

Crossrefs

Cf. Primes that contain only the digits (2,3,k): this sequence (k=0), A062350 (k=1), A199342 (k=4), A214703 (k=5), A260126 (k=6), A214704 (k=7), A260127 (k=8), A260128 (k=9).
Cf. A020458 (a subsequence).

Programs

  • Magma
    [p: p in PrimesUpTo(300000) | Intseq(p) subset {2,3,0}];
  • Mathematica
    Select[Prime[Range[2 10^4]], Complement[IntegerDigits[#], {2, 3, 0}]=={} &]
    Select[FromDigits/@Tuples[{0,2,3},6],PrimeQ] (* Harvey P. Dale, Mar 06 2020 *)

A386045 Primes having only {0, 2, 3, 8} as digits.

Original entry on oeis.org

2, 3, 23, 83, 223, 233, 283, 383, 823, 883, 2003, 2083, 2203, 2333, 2383, 2803, 2833, 3023, 3083, 3203, 3323, 3803, 3823, 3833, 8233, 8803, 20023, 20233, 20323, 20333, 22003, 22283, 22303, 23003, 23203, 23333, 23833, 28283, 30203, 30223, 30323, 30803, 32003, 32083
Offset: 1

Views

Author

Jason Bard, Jul 15 2025

Keywords

Crossrefs

Supersequence of A260125, A260127.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 2, 3, 8]];
    
  • Mathematica
    Select[FromDigits /@ Tuples[{0, 2, 3, 8}, n], PrimeQ]
  • PARI
    primes_with(, 1, [0, 2, 3, 8]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0238"), 41))) # uses function/imports in A385776
    

A386089 Primes having only {1, 2, 3, 8} as digits.

Original entry on oeis.org

2, 3, 11, 13, 23, 31, 83, 113, 131, 181, 211, 223, 233, 281, 283, 311, 313, 331, 383, 811, 821, 823, 881, 883, 1123, 1181, 1213, 1223, 1231, 1283, 1321, 1381, 1811, 1823, 1831, 2111, 2113, 2131, 2213, 2221, 2281, 2311, 2333, 2381, 2383, 2833, 3121, 3181, 3221
Offset: 1

Views

Author

Jason Bard, Jul 16 2025

Keywords

Crossrefs

Supersequence of A062350, A260127, A385775, A385778.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 2, 3, 8]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 2, 3, 8}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 2, 3, 8]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1238"), 41))) # uses function/imports in A385776
    

A386142 Primes having only {2, 3, 4, 8} as digits.

Original entry on oeis.org

2, 3, 23, 43, 83, 223, 233, 283, 383, 433, 443, 823, 883, 2243, 2333, 2383, 2423, 2833, 2843, 3323, 3343, 3433, 3823, 3833, 4243, 4283, 4423, 4483, 8233, 8243, 8423, 8443, 22283, 22343, 22433, 22483, 23333, 23833, 24223, 24443, 28283, 28433, 28843, 32233, 32323
Offset: 1

Views

Author

Jason Bard, Jul 17 2025

Keywords

Crossrefs

Supersequence of A199342, A199348, A260127.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [2, 3, 4, 8]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{2, 3, 4, 8}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [2, 3, 4, 8]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("2348"), 41))) # uses function/imports in A385776
    

A386145 Primes having only {2, 3, 5, 8} as digits.

Original entry on oeis.org

2, 3, 5, 23, 53, 83, 223, 233, 283, 353, 383, 523, 823, 853, 883, 2333, 2383, 2833, 3253, 3323, 3533, 3583, 3823, 3833, 3853, 5233, 5323, 5333, 8233, 8353, 22283, 22853, 23333, 23833, 25253, 25523, 25583, 28283, 32233, 32323, 32353, 32533, 32833, 33223, 33353
Offset: 1

Views

Author

Jason Bard, Jul 17 2025

Keywords

Crossrefs

Supersequence of A214703, A260127, A260226.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [2, 3, 5, 8]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{2, 3, 5, 8}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [2, 3, 5, 8]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("2358"), 41))) # uses function/imports in A385776
    

A386148 Primes having only {2, 3, 6, 8} as digits.

Original entry on oeis.org

2, 3, 23, 83, 223, 233, 263, 283, 383, 683, 823, 863, 883, 2333, 2383, 2633, 2663, 2683, 2833, 3323, 3623, 3823, 3833, 3863, 6263, 6323, 6823, 6833, 6863, 6883, 8233, 8263, 8363, 8623, 8663, 8863, 22283, 23333, 23623, 23633, 23663, 23833, 26263, 26633, 26683
Offset: 1

Views

Author

Jason Bard, Jul 18 2025

Keywords

Crossrefs

Supersequence of A260126, A260127, A385791.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [2, 3, 6, 8]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{2, 3, 6, 8}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [2, 3, 6, 8]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("2368"), 41))) # uses function/imports in A385776
    

A386150 Primes having only {2, 3, 7, 8} as digits.

Original entry on oeis.org

2, 3, 7, 23, 37, 73, 83, 223, 227, 233, 277, 283, 337, 373, 383, 727, 733, 773, 787, 823, 827, 877, 883, 887, 2237, 2273, 2287, 2333, 2377, 2383, 2777, 2833, 2837, 2887, 3323, 3373, 3727, 3733, 3823, 3833, 3877, 7237, 7283, 7333, 7723, 7727, 7823, 7873, 7877
Offset: 1

Views

Author

Jason Bard, Jul 18 2025

Keywords

Crossrefs

Supersequence of A214704, A260127, A260381, A385789.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [2, 3, 7, 8]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{2, 3, 7, 8}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [2, 3, 7, 8]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("2378"), 41))) # uses function/imports in A385776
    

A386152 Primes having only {2, 3, 8, 9} as digits.

Original entry on oeis.org

2, 3, 23, 29, 83, 89, 223, 229, 233, 239, 283, 293, 383, 389, 823, 829, 839, 883, 929, 983, 2239, 2293, 2333, 2339, 2383, 2389, 2393, 2399, 2833, 2939, 2999, 3229, 3299, 3323, 3329, 3389, 3823, 3833, 3889, 3923, 3929, 3989, 8233, 8293, 8329, 8389, 8839, 8893
Offset: 1

Views

Author

Jason Bard, Jul 18 2025

Keywords

Crossrefs

Supersequence of A260127, A260128, A385790, A385792.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [2, 3, 8, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{2, 3, 8, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [2, 3, 8, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("2389"), 41))) # uses function/imports in A385776
    
Showing 1-8 of 8 results.