cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260307 a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-6) - a(n-7) - a(n-8) + a(n-9) with a(0) - a(8) as shown below.

Original entry on oeis.org

1, 2, 3, 4, 6, 5, 8, 7, 10, 9, 13, 10, 15, 12, 17, 14, 20, 15, 22, 17, 24, 19, 27, 20, 29, 22, 31, 24, 34, 25, 36, 27, 38, 29, 41, 30, 43, 32, 45, 34, 48, 35, 50, 37, 52, 39, 55, 40, 57, 42, 59, 44, 62, 45, 64, 47, 66, 49, 69, 50, 71, 52, 73, 54, 76, 55, 78
Offset: 0

Views

Author

Paul Curtz, Nov 22 2015

Keywords

Comments

A260708 difference table rows have the same nine-step recurrence:
0, 1, 3, 6, 10, 16, 21, 29, 36, 46, 55, 65, 78, 93, ...
1, 2, 3, 4, 6, 5, 8, 7, 10, 9, 13, 10, 15, 12, ... = a(n)
1, 1, 1, 2, -1, 3, -1, 3, -1, 4, -3, 5, -3, 5, ... = b(n)
0, 0, 1, -3, 4, -4, 4, -4, 5, -7, 8, -8, 8, -8, ... (see A042965(n)).
(b(2n) + b(2n+1) = A052901(n+2).)

Crossrefs

Cf. A004767, A010718, A042965, A047212, A047282, A052901, A152467, A260160 (eight-step recurrence), A260699 (nine-step recurrence), A260708.

Programs

  • Magma
    I:=[1,2,3,4,6,5,8,7];[n le 8 select I[n] else Self(n-2) + Self(n-6) - Self(n-8): n in [1..70]]; // Vincenzo Librandi, Dec 26 2015
  • Mathematica
    RecurrenceTable[{a[n] == a[n-2] + a[n-6] - a[n-8], a[0]=1, a[1]=2, a[2]=3, a[3]=4, a[4]=6, a[5]=5, a[6]=8, a[7]=7}, a, {n,0,100}] (* G. C. Greubel, Nov 23 2015 *)
  • PARI
    Vec((x^6+x^5+3*x^4+2*x^3+2*x^2+2*x+1)/((x-1)^2*(x+1)^2*(x^2-x+1)*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Nov 22 2015
    
  • PARI
    vector(100, n, n--; n + (-1)^n *((n+2)\6) + 1) \\ Altug Alkan, Nov 24 2015
    

Formula

a(2n) = A047282(n). a(2n+1) = A047212(n+1).
a(n) = A260708(n+1) - A260708(n).
a(n+6) = a(n) + period of length 2: repeat 7, 5.
a(2n) + a(2n+1) = 3 + 4*n.
a(n) = n + 1 + (-1)^n*A152467(n+2).
From Colin Barker, Nov 22 2015: (Start)
a(n) = a(n-2) + a(n-6) - a(n-8) for n>7.
G.f.: (x^6+x^5+3*x^4+2*x^3+2*x^2+2*x+1) / ((x-1)^2*(x+1)^2*(x^2-x+1)*(x^2+x+1)).
(End)