cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260326 Common denominator of coefficients in Nörlund's polynomial D_{2n}(x).

Original entry on oeis.org

1, 3, 15, 63, 135, 99, 12285, 405, 6885, 161595, 1403325, 419175, 24877125, 229635, 528525, 26101845, 214708725, 1148175, 31479513975, 134336475, 23302211625, 513217002375, 374333754375, 50996192625, 25178013826875, 678264862275, 813304020375, 6122798191125
Offset: 0

Views

Author

N. J. A. Sloane, Jul 25 2015

Keywords

Comments

Let phi_(D,rho) be the average value of a generic degree D monic polynomial f when evaluated at the roots of the rho-th derivative of f, expressed as a polynomial in the averaged symmetric polynomials in the roots of f [Wojnar et al., 2017]. The "last" term of phi_(D,rho) is a multiple of the product of all roots of f; the coefficient is expressible as a polynomial h_D(N) in N:=D-rho. These polynomials are of the form h_D(N) = ((-1)^D/(D-1)!)(D-N)N^chi(D)*g_D(N) where chi(D) := (1 if D is odd, 0 if D is even) and g_D(N) is a monic polynomial of degree (D-2-chi). The coefficients of the g_D(N) are polynomials in D of the form k_n(D) = (1/Q(n))(D+t(n))^delta(n)D^chi(n+1)u_n(D) where Q(n) = A053657(n), t(n):=2 ceiling(n/2)+1, delta(n):= (1 if n is odd, 2 if n is even). For odd n, the leading coefficients of u_n(D) are a((n+1)/2). - Gregory Gerard Wojnar, Jul 17 2017

Crossrefs

For numerators see A260327.
Cf. A053657.

Programs

  • Maple
    # NorlundD polynomials are defined in A260327.
    seq(denom(NorlundD(2*n)(x)), n=0..27); # Peter Luschny, Jul 01 2019
  • Mathematica
    NorlundD[nu_, n_] := (-2)^nu NorlundB[nu, n, n/2] // Simplify;
    a[n_] := Module[{nb}, nb = NorlundB[2n, x]; nb/Coefficient[nb, x, 2n] // Together // Denominator];
    (* or: *)
    a[n_] := (2n)! SeriesCoefficient[(z/Sin[z])^x, {z, 0, 2n}] // Normal // Together // Denominator;
    Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Jul 01 2019 *)
  • PARI
    { A260326(n) = my(t, Y); Y=y+O(y^(2*n+2)); t = (2*n)! * Pol( polcoeff( exp( x * log(Y/sinh(Y)) + O(x^(n+1)) ), 2*n, y ) ); denominator(content(t)); } \\ Max Alekseyev, Jul 04 2019

Formula

E.g.f. Sum_{n>=0} D_{2n}(x) y^(2n)/(2n)! = (y/sinh(y))^x. - Max Alekseyev, Jul 04 2019

Extensions

Terms a(7) and beyond from Gregory Gerard Wojnar, Jul 19 2017
a(24)-a(27) corrected by Jean-François Alcover, Jul 01 2019