A260326 Common denominator of coefficients in Nörlund's polynomial D_{2n}(x).
1, 3, 15, 63, 135, 99, 12285, 405, 6885, 161595, 1403325, 419175, 24877125, 229635, 528525, 26101845, 214708725, 1148175, 31479513975, 134336475, 23302211625, 513217002375, 374333754375, 50996192625, 25178013826875, 678264862275, 813304020375, 6122798191125
Offset: 0
Links
- Jean-François Alcover, Table of n, a(n) for n = 0..100
- N. E. Nørlund, Vorlesungen ueber Differenzenrechnung Springer 1924, p. 460.
- N. E. Nörlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924; page 460 [Annotated scanned copy of pages 144-151 and 456-463]
- G. G. Wojnar, D. Sz. Wojnar, and L. Q. Brin, Universal Peculiar Linear Mean Relationships in All Polynomials, arXiv:1706.08381 [math.GM], 2017.
Programs
-
Maple
# NorlundD polynomials are defined in A260327. seq(denom(NorlundD(2*n)(x)), n=0..27); # Peter Luschny, Jul 01 2019
-
Mathematica
NorlundD[nu_, n_] := (-2)^nu NorlundB[nu, n, n/2] // Simplify; a[n_] := Module[{nb}, nb = NorlundB[2n, x]; nb/Coefficient[nb, x, 2n] // Together // Denominator]; (* or: *) a[n_] := (2n)! SeriesCoefficient[(z/Sin[z])^x, {z, 0, 2n}] // Normal // Together // Denominator; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Jul 01 2019 *)
-
PARI
{ A260326(n) = my(t, Y); Y=y+O(y^(2*n+2)); t = (2*n)! * Pol( polcoeff( exp( x * log(Y/sinh(Y)) + O(x^(n+1)) ), 2*n, y ) ); denominator(content(t)); } \\ Max Alekseyev, Jul 04 2019
Formula
E.g.f. Sum_{n>=0} D_{2n}(x) y^(2n)/(2n)! = (y/sinh(y))^x. - Max Alekseyev, Jul 04 2019
Extensions
Terms a(7) and beyond from Gregory Gerard Wojnar, Jul 19 2017
a(24)-a(27) corrected by Jean-François Alcover, Jul 01 2019
Comments