A259502 Primes p such that nextprime(p + 1)^(p - 1) == 1 (mod p^2).
5, 47, 151051, 240727, 911135839
Offset: 1
Programs
-
PARI
forprime(p=1, , if(Mod(nextprime(p+1), p^2)^(p-1)==1, print1(p, ", ")))
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
forprime(p=1, , if(Mod(nextprime(p+1), p^2)^(p-1)==1, print1(p, ", ")))
isA267487 := proc(p) if isprime(p) then A001221(p+1) ; simplify(modp(% &^ (p-1),p^2) =1 ); else false; end if; end proc: p := 2; for i from 1 do if isA267487(p) then printf("%d\n",p) ; end if; p := nextprime(p) ; end do: # R. J. Mathar, Jan 23 2016
Select[Prime[Range[3200]], Mod[PrimeNu[# + 1], #^2]^(# - 1) == 1 &] (* G. C. Greubel, Apr 25 2017 *)
forprime(p=1, 1e9, if(Mod(omega(p+1), p^2)^(p-1)==1, print1(p, ", ")))
A001222(20772) = 5 and 5^(20771-1) == 1 (mod 20771^2), so 20771 is a term of the sequence.
Select[Prime@ Range@ 230000, PowerMod[ PrimeOmega[# + 1], #-1, #^2] == 1 &] (* Giovanni Resta, Apr 09 2019 *)
forprime(p=1, , if(Mod(bigomega(p+1), p^2)^(p-1)==1, print1(p, ", ")))
Comments