A260416 The smallest prime that is greater than prime(n) and congruent to n mod prime(n).
3, 5, 13, 11, 71, 19, 41, 103, 101, 97, 73, 197, 587, 229, 109, 281, 607, 79, 421, 233, 167, 101, 521, 113, 607, 127, 233, 349, 683, 821, 1301, 163, 307, 173, 631, 1093, 1607, 853, 373, 1597, 757, 223, 1571, 1009, 439, 643, 2579, 271, 503, 2111, 983, 769, 1499, 1811, 569, 2423, 3823, 3581, 613, 2027, 1193, 941, 677, 997
Offset: 1
Keywords
Examples
Prime(4)=7, and the smallest prime that is greater than 7 and congruent to 4 mod 7 is 11, so a(4)=11.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a260416 n = a260416_list !! (n-1) a260416_list = f 1 a000040_list where f x (p:ps) = g ps where g (q:qs) = if (q - x) `mod` p == 0 then q : f (x + 1) ps else g qs -- Reinhard Zumkeller, Aug 20 2015
-
Mathematica
lst={};Do[w=1;Label[begin]; If[PrimeQ[w*Prime[n]+n],AppendTo[lst,w*Prime[n]+n],w=w+1;Goto[begin]],{n,100}];lst
-
PARI
first(m)={my(v=vector(m),t,p);for(i=1,m,t=i;while(1,p=prime(t);if((p-i)%prime(i)==0,v[i]=p;break,t++);));v;} /* Anders Hellström, Aug 11 2015 */