A260513 a(n) = (8*n+13*n^3+3*n^5)/24; also the sum of triangular numbers taken in successive groups of increasing size (see Example).
1, 9, 46, 164, 460, 1091, 2289, 4376, 7779, 13045, 20856, 32044, 47606, 68719, 96755, 133296, 180149, 239361, 313234, 404340, 515536, 649979, 811141, 1002824, 1229175, 1494701, 1804284, 2163196, 2577114, 3052135, 3594791, 4212064, 4911401, 5700729, 6588470
Offset: 1
Examples
The first ten triangular numbers are 1,3,6,10,15,21,28,36,45,and 55. Take them in groups, respectively, of 1, 2, 3, and 4 = (1), (3, 6), (10, 15, 21), and (28, 36, 45, 55). Summing each group separately = 1, 9, 46, 164.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Crossrefs
Cf. A000217.
Programs
-
Mathematica
Table[1/24*(8*x+13*x^3+3*x^5),{x,50}] Module[{nn=40},Total/@TakeList[Accumulate[Range[(nn(nn+1))/2]],Range[nn]]] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{1,9,46,164,460,1091},40] (* Harvey P. Dale, Aug 09 2023 *)
-
PARI
Vec(x*(x^4+3*x^3+7*x^2+3*x+1)/(x-1)^6 + O(x^100)) \\ Colin Barker, Aug 07 2015
Formula
From Colin Barker, Aug 07 2015: (Start)
a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6) for n>6.
G.f.: x*(x^4+3*x^3+7*x^2+3*x+1) / (x-1)^6. (End)
E.g.f.: exp(x)*x*(24 + 84*x + 88*x^2 + 30*x^3 + 3*x^4)/24. - Stefano Spezia, May 14 2024