cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260513 a(n) = (8*n+13*n^3+3*n^5)/24; also the sum of triangular numbers taken in successive groups of increasing size (see Example).

Original entry on oeis.org

1, 9, 46, 164, 460, 1091, 2289, 4376, 7779, 13045, 20856, 32044, 47606, 68719, 96755, 133296, 180149, 239361, 313234, 404340, 515536, 649979, 811141, 1002824, 1229175, 1494701, 1804284, 2163196, 2577114, 3052135, 3594791, 4212064, 4911401, 5700729, 6588470
Offset: 1

Views

Author

Harvey P. Dale, Jul 27 2015

Keywords

Examples

			The first ten triangular numbers are 1,3,6,10,15,21,28,36,45,and 55.  Take them in groups, respectively, of 1, 2, 3, and 4 = (1), (3, 6), (10, 15, 21), and (28, 36, 45, 55).  Summing each group separately = 1, 9, 46, 164.
		

Crossrefs

Cf. A000217.

Programs

  • Mathematica
    Table[1/24*(8*x+13*x^3+3*x^5),{x,50}]
    Module[{nn=40},Total/@TakeList[Accumulate[Range[(nn(nn+1))/2]],Range[nn]]] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{1,9,46,164,460,1091},40] (* Harvey P. Dale, Aug 09 2023 *)
  • PARI
    Vec(x*(x^4+3*x^3+7*x^2+3*x+1)/(x-1)^6 + O(x^100)) \\ Colin Barker, Aug 07 2015

Formula

From Colin Barker, Aug 07 2015: (Start)
a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6) for n>6.
G.f.: x*(x^4+3*x^3+7*x^2+3*x+1) / (x-1)^6. (End)
E.g.f.: exp(x)*x*(24 + 84*x + 88*x^2 + 30*x^3 + 3*x^4)/24. - Stefano Spezia, May 14 2024