cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260524 Pseudoprimes to bases 2, 3, 5 and 7 that are congruent to 5 (modulo 6) but are not Carmichael numbers (A002997).

Original entry on oeis.org

468950021, 493108481, 659846021, 5936122901, 8144063621, 11408333333, 12601267541, 14252656133, 18074903681, 27223783841, 30633711701, 31093792133, 31797754721, 61426533761, 65085388961, 86610942881, 91945013333, 92380393121, 102538073177
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A153581.

Programs

  • Mathematica
    fQ[n_] := !PrimeQ[n] && PowerMod[2, n - 1, n] == 1 &&
    > PowerMod[3, n - 1, n] == 1 && PowerMod[5, n - 1, n] == 1 && PowerMod[7, n - 1, n] == 1 && Mod[n, CarmichaelLambda[n]] != 1; k = 1; lst = {}; While[k < 25000000001, If[ fQ@ k, AppendTo[lst, k]; Print@ k]; k += 6]; lst
  • PARI
    Korselt(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]>1||(n-1)%(f[i, 1]-1), return(0))); 1
    is(n)=n%6==5 && Mod(2,n)^n==2 && Mod(3,n)^n==3 && Mod(5,n)^(n-1)==1 && Mod(7,n)^(n-1)==1 && !isprime(n) && !Korselt(n) \\ Charles R Greathouse IV, Jul 29 2015
    
  • Perl
    use ntheory ":all"; foroddcomposites { say if $%6 == 5 && is_pseudoprime($,2,3,5,7) && $ % carmichael_lambda($) != 1; } 1e9; # Dana Jacobsen, Sep 07 2015

Extensions

a(9)-a(19) from Charles R Greathouse IV, Jul 29 2015