A260669 Number of unordered pairs of partitions of n with no common parts.
1, 0, 1, 2, 6, 8, 24, 30, 74, 110, 219, 309, 651, 870, 1608, 2394, 4085, 5756, 9931, 13785, 22724, 32300, 50404, 70862, 111540, 153756, 232868, 326259, 484090, 667015, 986082, 1345566, 1951216, 2673588, 3805742, 5179213, 7348514, 9895254, 13845750, 18681896
Offset: 0
Keywords
Examples
n = 6 has A000041(6) = 11 partitions: [6], [5,1], [4,2], [4,1,1], [3,3], [3,2,1], [3,1,1,1], [2,2,2], [2,2,1,1], [2,1,1,1,1], [1,1,1,1,1,1]; the following table shows the number of common parts of the pairs of these partitions, e.g. row i, col f: number of common parts of [2,2,1,1] and [3,2,1] = 2: . -------------------+---+---+---+---+---+---+---+---+---+---+---+ . | a | b | c | d | e | f | g | h | i | j | k | . ---+---------------+---+---+---+---+---+---+---+---+---+---+---+ . a | [6] | 1 | . b | [5,1] | 0 2 | . c | [4,2] | 0 0 2 | . d | [4,1,1] | 0 1 1 3 | . e | [3,3] | 0 0 0 0 2 | . f | [3,2,1] | 0 1 1 1 1 3 | . g | [3,1,1,1] | 0 1 0 2 1 2 4 | . h | [2,2,2] | 0 0 1 0 0 1 0 3 | . i | [2,2,1,1] | 0 1 1 2 0 2 2 2 4 | . j | [2,1,1,1,1] | 0 1 1 2 0 2 3 1 3 5 | . k | [1,1,1,1,1,1] | 0 1 0 2 0 1 3 0 2 4 6 | . ---+---------------+---+---+---+---+---+---+---+---+---+---+---+ The table contains 24 zeros, therefore a(6) = 24.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..5000
Programs
-
Haskell
a260669 = flip div 2 . a054440
Formula
a(n) = A054440(n) / 2 for n >= 1.
Extensions
a(0)=1 prepended by Alois P. Heinz, Feb 07 2024