cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260669 Number of unordered pairs of partitions of n with no common parts.

Original entry on oeis.org

1, 0, 1, 2, 6, 8, 24, 30, 74, 110, 219, 309, 651, 870, 1608, 2394, 4085, 5756, 9931, 13785, 22724, 32300, 50404, 70862, 111540, 153756, 232868, 326259, 484090, 667015, 986082, 1345566, 1951216, 2673588, 3805742, 5179213, 7348514, 9895254, 13845750, 18681896
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 15 2015

Keywords

Examples

			n = 6 has A000041(6) = 11 partitions: [6], [5,1], [4,2], [4,1,1], [3,3], [3,2,1], [3,1,1,1], [2,2,2], [2,2,1,1], [2,1,1,1,1], [1,1,1,1,1,1]; the following table shows the number of common parts of the pairs of these partitions, e.g. row i, col f: number of common parts of [2,2,1,1] and [3,2,1] = 2:
. -------------------+---+---+---+---+---+---+---+---+---+---+---+
.                    | a | b | c | d | e | f | g | h | i | j | k |
. ---+---------------+---+---+---+---+---+---+---+---+---+---+---+
.  a | [6]           | 1                                         |
.  b | [5,1]         | 0   2                                     |
.  c | [4,2]         | 0   0   2                                 |
.  d | [4,1,1]       | 0   1   1   3                             |
.  e | [3,3]         | 0   0   0   0   2                         |
.  f | [3,2,1]       | 0   1   1   1   1   3                     |
.  g | [3,1,1,1]     | 0   1   0   2   1   2   4                 |
.  h | [2,2,2]       | 0   0   1   0   0   1   0   3             |
.  i | [2,2,1,1]     | 0   1   1   2   0   2   2   2   4         |
.  j | [2,1,1,1,1]   | 0   1   1   2   0   2   3   1   3   5     |
.  k | [1,1,1,1,1,1] | 0   1   0   2   0   1   3   0   2   4   6 |
. ---+---------------+---+---+---+---+---+---+---+---+---+---+---+
The table contains 24 zeros, therefore a(6) = 24.
		

Crossrefs

Programs

  • Haskell
    a260669 = flip div 2 . a054440

Formula

a(n) = A054440(n) / 2 for n >= 1.

Extensions

a(0)=1 prepended by Alois P. Heinz, Feb 07 2024