cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260676 Expansion of phi(x) * psi(x^30) in powers of x where phi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 2, 0, 0, 2, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Nov 14 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + 2*x^4 + 2*x^9 + 2*x^16 + 2*x^25 + x^30 + 2*x^31 + 2*x^34 + ...
G.f. = q^15 + 2*q^19 + 2*q^31 + 2*q^51 + 2*q^79 + 2*q^115 + q^135 + 2*q^139 + ...
		

Crossrefs

Cf. A260671.

Programs

  • Magma
    m:=130;
    f:= func< q | (&*[( (1-q^(2*n))^5*(1-q^(60*n))^2 )/( (1-q^n)^2*(1-q^(4*n))^2*(1-q^(30*n)) ): n in [1..m+1]]) >;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( f(x) )); // G. C. Greubel, Feb 02 2023
    
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[3, 0, x] QPochhammer[x^60]^2 / QPochhammer[x^30], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^60 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)^2 * eta(x^30 + A)), n))};
    
  • SageMath
    m = 130
    def f(q): return product( ((1-q^(2*n))^5*(1-q^(60*n))^2)/((1-q^n)^2*(1-q^(4*n))^2*(1-q^(30*n))) for n in range(1,m+2))
    def A260676_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( f(x) ).list()
    A260676_list(m) # G. C. Greubel, Feb 02 2023

Formula

Expansion of q^(-15/4) * eta(q^2)^5 * eta(q^60)^2 / (eta(q)^2 * eta(q^4)^2 * eta(q^30)) in powers of q.
Euler transform of a period 60 sequence.
2 * a(n) = A260671(4*n + 15).