cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A198094 3rd term of continued fraction for sqrt(2)^sqrt(2)^...^sqrt(2) with n sqrt(2)'s.

Original entry on oeis.org

2, 1, 3, 5, 8, 12, 19, 28, 41, 60, 87, 127, 183, 266, 384, 555, 802, 1158, 1671, 2412, 3480, 5022, 7246, 10455, 15084, 21763, 31398, 45298, 65353, 94285, 136025, 196244, 283121, 408458, 589281, 850154, 1226514, 1769486, 2552829, 3682955, 5313382
Offset: 1

Views

Author

Vladimir Reshetnikov, Oct 30 2011

Keywords

Comments

1st terms are 1,1,1,1,1,... and 2nd terms are 2,1,1,1,1,...

Crossrefs

Programs

  • Mathematica
    ContinuedFraction[#, 3][[3]] & /@ NestList[Sqrt[2]^# &, Sqrt[2], 40]
  • PARI
    a(n) = {my(c = sqrt(2)); for (k=1, n-1, c = sqrt(2)^c); contfrac(c)[3];} \\ Michel Marcus, Oct 19 2016

Formula

a(n) ~ c / log(2)^n, where c = 1/A277435 = 1.582031511247872306827383... - Vladimir Reshetnikov, Oct 18 2016

A277435 Decimal expansion of lim_{n->inf} (2 - sqrt(2)^^n)/log(2)^n, where x^^n denotes tetration.

Original entry on oeis.org

6, 3, 2, 0, 9, 8, 6, 6, 1, 0, 5, 0, 8, 2, 9, 2, 5, 0, 3, 5, 5, 4, 5, 0, 6, 4, 5, 9, 9, 0, 7, 8, 0, 8, 6, 2, 7, 9, 9, 4, 7, 4, 5, 5, 2, 3, 2, 4, 1, 6, 4, 4, 7, 9, 6, 6, 9, 7, 2, 3, 3, 8, 2, 4, 3, 2, 5, 8, 6, 1, 6, 2, 7, 6, 1, 5, 0, 9, 6, 2, 1, 4, 7, 0, 9, 1, 7, 6, 6, 4, 9, 4, 2, 6, 6, 7, 7, 3, 7, 1, 6, 3, 7, 9, 4, 6
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 14 2016

Keywords

Comments

Tetration x^^n is defined recursively: x^^0 = 1, x^^n = x^(x^^(n-1)). Note that sqrt(2)^^inf = lim_{n->inf} sqrt(2)^^n = 2. Asymptotically, sqrt(2)^^n = 2 - O(log(2)^n). This constant is the coefficient in the O(log(2)^n) term. Furthermore, sqrt(2)^^n = 2 - a*log(2)^n + (a^2/(4*(1 - 1/log(2))))*log(2)^(2*n) + O(log(2)^(3*n)).

Examples

			0.63209866105082925035545064599078...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[SequenceLimit[1`200 Table[(2 - Power @@ Table[Sqrt[2], {n}])/Log[2]^n, {n, 1, 200}]], 10, 100][[1]]

Formula

a = 2*sqrt(2)*A260691/(1-log(2)).

A288606 E.g.f. expansion of f(x) around x = 1, where f(x) is the coefficient from the tetration asymptotic: x^^n = x^^inf - f(x)*log(x^^inf)^n + O(log(x^^inf)^(2*n)).

Original entry on oeis.org

0, 1, 2, 6, 26, 120, 474, -3500, -169744, -4739628, -122528220, -3244006128, -89971866744, -2643601630488, -82449886989120, -2730313541889120, -95853665484598656, -3561107748108889344, -139703010646898138688, -5774800668716738596896, -250987866830927324395200
Offset: 0

Views

Author

Vladimir Reshetnikov, Jun 11 2017

Keywords

Comments

The tetration x^^n is defined recursively: x^^0 = 1, x^^n = x^(x^^(n-1)). For x in [e^(-e), e^(1/e)] there is a limit x^^inf = limit_{n->inf} x^^n = e^(-W(-log x)), where W(z) is the Lambert W-function. The tetration approaches this limit exponentially: x^^n = x^^inf - f(x)*log(x^^inf)^n + O(log(x^^inf)^(2*n)), where the coefficient f(x) = lim_{n->inf} (x^^inf - x^^n)/log(x^^inf)^n depends on x. This sequence gives the e.g.f. expansion of f(x) around x = 1.

Examples

			f(x) = (1/1!)*(x-1) + (2/2!)*(x-1)^2 + (6/3!)*(x-1)^3 + (26/4!)*(x-1)^4 + (120/5!)*(x-1)^5 + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := n! SeriesCoefficient[(Exp[-ProductLog[-Log[x]]] - Power @@ Table[x, {n}])/(-ProductLog[-Log[x]])^n, {x, 1, n}]; Table[a[n], {n, 0, 20}]

A288607 Exponential reversion of A288606.

Original entry on oeis.org

0, 1, -2, 6, -26, 180, -1734, 23464, -385160, 7561308, -166580820, 4109707800, -110972371608, 3276276647280, -104668338898200, 3609072471039840, -133458102348679680, 5274992059017870048, -221831508056339323584, 9893765935654872310656, -466361328442205843665920
Offset: 0

Views

Author

Vladimir Reshetnikov, Jun 11 2017

Keywords

Comments

It appears that the terms have alternating signs, and their absolute values grow monotonically and are log-convex.

Crossrefs

Showing 1-4 of 4 results.