cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260702 Numbers n such that 3*n and n^2 have the same digit sum.

Original entry on oeis.org

0, 3, 6, 9, 12, 15, 18, 21, 30, 33, 39, 45, 48, 51, 60, 66, 90, 96, 99, 102, 105, 111, 120, 123, 129, 132, 150, 153, 156, 159, 162, 165, 180, 189, 195, 198, 201, 210, 225, 231, 246, 252, 255, 261, 285, 300, 330, 333, 348, 351, 390, 399, 429, 450, 453, 459, 462
Offset: 1

Views

Author

Vincenzo Librandi, Nov 17 2015

Keywords

Comments

All terms are multiple of 3.
If n is in the sequence, then so is 10*n. - Robert Israel, Apr 05 2020

Examples

			159 is in the sequence because 159^2 = 25281 and 3*159 = 477 have the same digit sum: 18.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..500] | &+Intseq(3*n) eq &+Intseq(n^2)];
    
  • Maple
    select(n -> convert(convert(3*n,base,10),`+`)=convert(convert(n^2,base,10),`+`), [seq(i,i=0..1000,3)]); # Robert Israel, Apr 05 2020
  • Mathematica
    Select[Range[0, 500], Total[IntegerDigits[3 #]] == Total[IntegerDigits[#^2]] &]
  • PARI
    isok(n) = sumdigits(3*n) == sumdigits(n^2); \\ Michel Marcus, Nov 17 2015
    
  • Sage
    [n for n in (0..500) if sum((3*n).digits())==sum((n^2).digits())] # Bruno Berselli, Nov 17 2015

Formula

A007953(A008585(a(n))) = A007953(A000290(a(n))).