cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260705 Least integer k such that the set of the divisors of k contains exactly n pairs of numbers having the following property: for each pair of two distinct divisors, the reversal of one is equal to the other.

Original entry on oeis.org

84, 168, 336, 1008, 3024, 5544, 11088, 16632, 33264, 49896, 99792, 182952, 365904, 249480, 498960, 1097712, 2162160, 3359664, 1846152, 3027024, 5538456, 6054048, 9081072, 9230760, 14270256, 19891872, 20307672, 25197480, 33297264, 45405360, 55135080, 71351280
Offset: 1

Views

Author

Michel Lagneau, Nov 17 2015

Keywords

Comments

It seems that a(n)==0 (mod 84).
Additional terms with n > 75: a(77) = 15455984544, a(80) = 27719972280, a(83) = 22439977560, a(84) = 18479981520, a(86) = 28559971440. - Lars Blomberg, Jan 04 2016

Examples

			a(4)=1008 because the set of the divisors {1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 16, 18, 21, 24, 28, 36, 42, 48, 56, 63, 72, 84, 112, 126, 144, 168, 252, 336, 504, 1008} contains 4 pairs (12, 21), (24, 42), (36, 63) and (48, 84) with the property 21 = reversal(12), 42 = reversal(24), 63 = reversal(36) and 84 = reversal(48).
		

Crossrefs

Programs

  • Maple
    with(numtheory):nn:=10^8:
    for n from 1 to 16 do:
    ii:=0:
    for m from 1 to nn while(ii=0) do:
    it:=0:d:=divisors(m):d0:=nops(d):
      for i from 1 to d0 do:
       dd:=d[i]:y:=convert(dd,base,10):n1:=length(dd):
       s:=sum('y[j]*10^(n1-j)', 'j'=1..n1):
        for k from i+1 to d0 do:
         if s=d[k]
         then
         it:=it+1:
         else fi:
        od:
        od:
        if it=n
        then
        ii:=1:printf("%d %d \n",n,m):
        else fi:
    od:
    od:
  • PARI
    nbr(vd) = {nb = 0; for (j=1, #vd, da = vd[j]; rda = eval(concat(Vecrev(Str(da)))); rrda = eval(concat(Vecrev(Str(rda)))); if ((da != rda) && vecsearch(vd,rda) && (da == rrda), nb++);); nb/2;}
    a(n) = {k=1; while (nbrp(divisors(k)) != n, k++); k;} \\ Michel Marcus, Dec 27 2015

Extensions

a(14)-a(15) corrected by Lars Blomberg, Dec 27 2015
a(7), a(19), a(20) corrected and a(21)-a(32) added by Lars Blomberg, Jan 04 2016