A260705 Least integer k such that the set of the divisors of k contains exactly n pairs of numbers having the following property: for each pair of two distinct divisors, the reversal of one is equal to the other.
84, 168, 336, 1008, 3024, 5544, 11088, 16632, 33264, 49896, 99792, 182952, 365904, 249480, 498960, 1097712, 2162160, 3359664, 1846152, 3027024, 5538456, 6054048, 9081072, 9230760, 14270256, 19891872, 20307672, 25197480, 33297264, 45405360, 55135080, 71351280
Offset: 1
Examples
a(4)=1008 because the set of the divisors {1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 16, 18, 21, 24, 28, 36, 42, 48, 56, 63, 72, 84, 112, 126, 144, 168, 252, 336, 504, 1008} contains 4 pairs (12, 21), (24, 42), (36, 63) and (48, 84) with the property 21 = reversal(12), 42 = reversal(24), 63 = reversal(36) and 84 = reversal(48).
Links
- Lars Blomberg, Table of n, a(n) for n = 1..75.
Programs
-
Maple
with(numtheory):nn:=10^8: for n from 1 to 16 do: ii:=0: for m from 1 to nn while(ii=0) do: it:=0:d:=divisors(m):d0:=nops(d): for i from 1 to d0 do: dd:=d[i]:y:=convert(dd,base,10):n1:=length(dd): s:=sum('y[j]*10^(n1-j)', 'j'=1..n1): for k from i+1 to d0 do: if s=d[k] then it:=it+1: else fi: od: od: if it=n then ii:=1:printf("%d %d \n",n,m): else fi: od: od:
-
PARI
nbr(vd) = {nb = 0; for (j=1, #vd, da = vd[j]; rda = eval(concat(Vecrev(Str(da)))); rrda = eval(concat(Vecrev(Str(rda)))); if ((da != rda) && vecsearch(vd,rda) && (da == rrda), nb++);); nb/2;} a(n) = {k=1; while (nbrp(divisors(k)) != n, k++); k;} \\ Michel Marcus, Dec 27 2015
Extensions
a(14)-a(15) corrected by Lars Blomberg, Dec 27 2015
a(7), a(19), a(20) corrected and a(21)-a(32) added by Lars Blomberg, Jan 04 2016
Comments