A260728 Bitwise-OR of the exponents of all 4k+3 primes in the prime factorization of n.
0, 0, 0, 1, 0, 0, 1, 1, 0, 2, 0, 1, 1, 0, 1, 1, 0, 0, 2, 1, 0, 1, 1, 1, 1, 0, 0, 3, 1, 0, 1, 1, 0, 1, 0, 1, 2, 0, 1, 1, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 0, 1, 0, 0, 3, 1, 1, 1, 0, 1, 1, 0, 1, 3, 0, 0, 1, 1, 0, 1, 1, 1, 2, 0, 0, 1, 1, 1, 1, 1, 0, 4, 0, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 1, 0, 2, 3, 0, 0, 1, 1, 0, 1, 0, 1, 3, 0, 1, 1, 1, 0, 1, 1, 0, 2, 1, 1, 1
Offset: 0
Keywords
Examples
For n = 21 = 3^1 * 7^1 we compute A003986(1,1) = 1, thus a(21) = 1. For n = 63 = 3^2 * 7^1 we compute A003986(2,1) = A003986(1,2) = 3, thus a(63) = 3.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Mathematica
Table[BitOr @@ (Map[Last, FactorInteger@ n /. {p_, } /; MemberQ[{0, 1, 2}, Mod[p, 4]] -> Nothing]), {n, 0, 120}] (* _Michael De Vlieger, Feb 07 2016 *)
-
Python
from functools import reduce from operator import or_ from sympy import factorint def A260728(n): return reduce(or_,(e for p, e in factorint(n).items() if p & 3 == 3),0) # Chai Wah Wu, Jun 28 2022
-
Scheme
(define (A260728 n) (cond ((< n 3) 0) ((even? n) (A260728 (/ n 2))) ((= 1 (modulo (A020639 n) 4)) (A260728 (A032742 n))) (else (A003986bi (A067029 n) (A260728 (A028234 n)))))) ;; A003986bi implements bitwise-or (see A003986).
Formula
If n < 3, a(n) = 0; thereafter, for any even n: a(n) = a(n/2), for any n with its smallest prime factor (A020639) of the form 4k+1: a(n) = a(A032742(n)), otherwise [when A020639(n) is of the form 4k+3] a(n) = A003986(A067029(n),a(A028234(n))).
Other identities. For all n >= 0:
A229062(n) = 1 - A000035(a(n)). [Reduced modulo 2 and complemented, the sequence gives the characteristic function of A001481.]
a(n) = a(A097706(n)). [The result depends only on the prime factors of the form 4k+3.]
Comments