A260730 Numbers n for which A065339(n) > A260728(n).
21, 33, 42, 57, 66, 69, 77, 84, 93, 105, 114, 129, 132, 133, 138, 141, 154, 161, 165, 168, 177, 186, 189, 201, 209, 210, 213, 217, 228, 231, 237, 249, 253, 258, 264, 266, 273, 276, 282, 285, 297, 301, 308, 309, 321, 322, 329, 330, 336, 341, 345, 354, 357, 372, 378, 381, 385, 393, 399, 402, 413, 417, 418, 420, 426, 429, 434, 437, 441, 453, 456, 462, 465, 469, 473, 474, 483, 489, 497, 498, 501, 506, 513, 516, 517, 525, 528, 532, 537, 546, 552
Offset: 1
Keywords
Examples
21 = 3^1 * 7^1 is present, because in its prime factors of the form 4k+3 (which are 3 and 7) the exponents 1 and 1 have at least one 1-bit in the same position, thus producing a carry-bit when summed in base-2. 63 = 3^2 * 7^1 is NOT present, because in its prime factors of the form 4k+3 the exponents 2 and 1 ("10" and "1" in binary) do NOT produce a carry-bit when summed in base-2, as those binary representations do not have any 1's in a common position. 189 = 3^3 * 7^1 is present, because in its prime factors of the form 4k+3 the exponents 3 and 1 ("11" and "1" in binary) have at least one 1-bit in the same position, thus producing a carry-bit when summed in base-2.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Comments