cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260803 Number of ways to write n as n = x*y*z + x + y + z where 1 <= x <= y <= z <= n.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 2, 1, 2, 0, 2, 1, 2, 1, 1, 0, 4, 1, 2, 1, 2, 1, 3, 0, 2, 2, 2, 1, 5, 0, 1, 2, 4, 0, 4, 0, 3, 2, 2, 1, 4, 2, 2, 2, 2, 0, 5, 1, 4, 1, 1, 2, 6, 1, 2, 2, 4, 1, 4, 0, 3, 3, 3, 0, 6, 1, 2, 3, 4, 1, 4, 1, 4, 2, 2, 0, 7, 2, 3, 2, 4, 2, 5, 1, 2, 2, 2, 2, 8, 0, 3, 4
Offset: 0

Views

Author

David A. Corneth, Jul 31 2015

Keywords

Comments

From Vladimir Shevelev, Aug 02 2015: (Start)
Conjecture: liminf_{n->infinity} (a(n)) = 0.
Note that this limit should realize on a subsequence of primes. Indeed, if n>=4 is a composite number, then n = p*q, p>=2, q>=2. If p <= q, then, for x=1, y = p-1, z = q-1, we have x*y*z + x + y + z = 1*(p-1)*(q-1) + 1 + (p-1) + (q-1) = p*q = n; so a(n) >= 1. If p > q, then we set x=1, y = q-1, z = p-1, and again a(n) >= 1.
Note also that primes r for which a(r) = 0 should grow fast enough. Indeed, r should not be a prime of the form (2*t+1)*k + t + 2, 2 <= t <= k, (*) where t==0 or 2 (mod 3).
Indeed, in this case r = x*y*z + x + y + z for x = 2, y = t, z = k. Since gcd(2*t+1, t+2) = gcd(2*(t+2)-3, t+2)=1, then for every considered t and k>=t, the progression (*) contains infinitely many primes r for which a(r) >= 1.
Finally, note that limsup_{n->infinity} (a(n)) = infinity. Indeed, this limit is realized, say, on primorials (A002110), since, when m goes to infinity, the number of representations of A002110(m) of the form p*q tends to infinity. So on primorials >1 we have a strictly monotonic subsequence: 0,1,3,8,25,46,78,164 ... (the terms 46 and 78 were calculated by Michel Marcus, 164 - by David A. Corneth). (End)

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[Sum[Boole[Mod[n-x-y, x y + 1] == 0 && n-x >= y(x y + 2)], {y, x, (n - x(1+x^2))/2 // Floor}], {x, 1, n/3 // Floor}];
    Table[a[n], {n, 0, 99}] (* Jean-François Alcover, Sep 20 2018, after M. F. Hasler *)
  • PARI
    a(n)=sum(x=1,n\3,sum(y=x,(n-x*(1+x^2))\2,(n-x-y)%(x*y+1)==0&&n-x>=y*(x*y+2))) \\ M. F. Hasler, Jul 31 2015

Formula

a(n) = A071693(n) - A008619(n) = A071693(n) - floor(n/2) - 1.