cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260810 a(n) = n^2*(3*n^2 - 1)/2.

Original entry on oeis.org

0, 1, 22, 117, 376, 925, 1926, 3577, 6112, 9801, 14950, 21901, 31032, 42757, 57526, 75825, 98176, 125137, 157302, 195301, 239800, 291501, 351142, 419497, 497376, 585625, 685126, 796797, 921592, 1060501, 1214550, 1384801, 1572352, 1778337, 2003926, 2250325, 2518776
Offset: 0

Views

Author

Bruno Berselli, Jul 31 2015

Keywords

Comments

Pentagonal numbers with square indices.
After 0, a(k) is a square if k is in A072256.

Crossrefs

Subsequence of A001318 and A245288 (see Formula field).
Cf. A000326, A193218 (first differences).
Cf. A000583 (squares with square indices), A002593 (hexagonal numbers with square indices).
Cf. A232713 (pentagonal numbers with pentagonal indices), A236770 (pentagonal numbers with triangular indices).

Programs

  • Magma
    [n^2*(3*n^2-1)/2: n in [0..40]];
    
  • Magma
    I:=[0,1,22,117,376]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]]; // Vincenzo Librandi, Aug 23 2015
  • Maple
    A260810:=n->n^2*(3*n^2 - 1)/2: seq(A260810(n), n=0..50); # Wesley Ivan Hurt, Apr 25 2017
  • Mathematica
    Table[n^2 (3 n^2 - 1)/2, {n, 0, 40}]
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 22, 117, 376}, 40] (* Vincenzo Librandi, Aug 23 2015 *)
  • PARI
    vector(40, n, n--; n^2*(3*n^2-1)/2)
    
  • Sage
    [n^2*(3*n^2-1)/2 for n in (0..40)]
    

Formula

G.f.: x*(1 + x)*(1 + 16*x + x^2)/(1 - x)^5.
a(n) = a(-n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = A245288(2*n^2).
a(n) = A001318(2*n^2-1) with A001318(-1) = 0.
From Amiram Eldar, Aug 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 3 - Pi^2/3 - sqrt(3)*Pi*cot(Pi/sqrt(3)).
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(3)*Pi*cosec(Pi/sqrt(3)) - Pi^2/6 - 3. (End)