cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260828 Primes having only {1, 5, 7} as digits.

Original entry on oeis.org

5, 7, 11, 17, 71, 151, 157, 557, 571, 577, 751, 757, 1117, 1151, 1171, 1511, 1571, 1777, 5171, 5557, 5711, 5717, 7151, 7177, 7517, 7577, 7717, 7757, 11117, 11171, 11177, 11551, 11717, 11777, 15511, 15551, 17117, 17551, 51151, 51157, 51511, 51517, 51551, 51577
Offset: 1

Views

Author

Vincenzo Librandi, Aug 02 2015

Keywords

Crossrefs

Subsequence of A030096. A020453, A020455 and A020467 are subsequences.
Cf. similar sequences listed in A260827.
Cf. A000040.

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^5) | Set(Intseq(p)) subset [1,5,7]];
    
  • Mathematica
    Select[Prime[Range[2 10^4]], Complement[IntegerDigits[#], {1, 5, 7}] == {} &]
  • Python
    from sympy import isprime
    from sympy.utilities.iterables import multiset_permutations
    def aupton(terms):
      n, digits, alst = 0, 1, []
      while len(alst) < terms:
        mpstr = "".join(d*digits for d in "157")
        for mp in multiset_permutations(mpstr, digits):
          t = int("".join(mp))
          if isprime(t): alst.append(t)
          if len(alst) == terms: break
        else: digits += 1
      return alst
    print(aupton(44)) # Michael S. Branicky, May 07 2021