cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A260827 Primes having only {0, 5, 7} as digits.

Original entry on oeis.org

5, 7, 557, 577, 757, 5077, 5507, 5557, 7057, 7507, 7577, 7757, 50077, 50707, 50777, 55057, 57077, 57557, 70507, 75557, 75577, 75707, 77557, 500057, 500777, 505777, 507077, 507557, 507757, 550007, 550577, 550757, 555077, 555557, 555707, 557057, 570077, 575077
Offset: 1

Views

Author

Vincenzo Librandi, Aug 01 2015

Keywords

Crossrefs

A020467 is a subsequence.
Cf. Primes that contain only the digits (k,5,7): this sequence (k=0), A260828 (k=1), A214705 (k=2), A087363 (k=3), A217039 (k=4), A260829 (k=6), A260830 (k=8), A260831 (k=9).
Cf. A000040.

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^6) | Set(Intseq(p)) subset [0,5,7]];
    
  • Mathematica
    Select[Prime[Range[2 10^5]], Complement[IntegerDigits[#], {0, 5, 7}]=={} &]
  • Python
    from sympy import isprime
    from sympy.utilities.iterables import multiset_permutations
    def aupton(terms):
      n, digits, alst = 0, 1, []
      while len(alst) < terms:
        mpstr = "".join(d*digits for d in "057")
        for mp in multiset_permutations(mpstr, digits):
          if mp[0] == "0": continue
          t = int("".join(mp))
          if isprime(t): alst.append(t)
          if len(alst) == terms: break
        else: digits += 1
      return alst
    print(aupton(38)) # Michael S. Branicky, May 07 2021

A260889 Primes having only {1, 2, 7} as digits.

Original entry on oeis.org

2, 7, 11, 17, 71, 127, 211, 227, 271, 277, 727, 1117, 1171, 1217, 1277, 1721, 1777, 2111, 2221, 2711, 2777, 7121, 7127, 7177, 7211, 7717, 7727, 11117, 11171, 11177, 11717, 11777, 12211, 12227, 12277, 12721, 17117, 21121, 21211, 21221, 21227, 21277, 21727
Offset: 1

Views

Author

Vincenzo Librandi, Aug 04 2015

Keywords

Comments

A020450, A020455 and A020459 are subsequences.

Crossrefs

Cf. Primes that contain only the digits (k,1,7): A199327 (k=0), this sequence (k=2), A260379 (k=3), A079651 (k=4), A260828 (k=5), A260891 (k=6), A260892 (k=8), A260893 (k=9).

Programs

  • Magma
    [p: p in PrimesUpTo(3*10^4) | Set(Intseq(p)) subset [1, 2, 7]];
  • Mathematica
    Select[Prime[Range[2 10^5]], Complement[IntegerDigits[#], {1, 2, 7}] == {} &]
    Table[Select[FromDigits/@Tuples[{1,2,7},n],PrimeQ],{n,5}]//Flatten (* Harvey P. Dale, Apr 12 2018 *)

A386032 Primes having only {0, 1, 5, 7} as digits.

Original entry on oeis.org

5, 7, 11, 17, 71, 101, 107, 151, 157, 557, 571, 577, 701, 751, 757, 1051, 1117, 1151, 1171, 1511, 1571, 1777, 5011, 5051, 5077, 5101, 5107, 5171, 5501, 5507, 5557, 5701, 5711, 5717, 7001, 7057, 7151, 7177, 7507, 7517, 7577, 7717, 7757, 10007, 10111, 10151, 10177
Offset: 1

Views

Author

Jason Bard, Jul 14 2025

Keywords

Crossrefs

Supersequence of A199325, A199327, A260828.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 1, 5, 7]];
    
  • Mathematica
    Select[FromDigits /@ Tuples[{0, 1, 5, 7}, n], PrimeQ]
  • PARI
    primes_with(, 1, [0, 1, 5, 7]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0157"), 41))) # uses function/imports in A385776
    

A386096 Primes having only {1, 2, 5, 7} as digits.

Original entry on oeis.org

2, 5, 7, 11, 17, 71, 127, 151, 157, 211, 227, 251, 257, 271, 277, 521, 557, 571, 577, 727, 751, 757, 1117, 1151, 1171, 1217, 1277, 1511, 1571, 1721, 1777, 2111, 2221, 2251, 2521, 2551, 2557, 2711, 2777, 5171, 5227, 5521, 5527, 5557, 5711, 5717, 7121, 7127, 7151
Offset: 1

Views

Author

Jason Bard, Jul 16 2025

Keywords

Crossrefs

Supersequence of A214705, A260828, A260889, A385773.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 2, 5, 7]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 2, 5, 7}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 2, 5, 7]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1257"), 41))) # uses function/imports in A385776
    

A386111 Primes having only {1, 3, 5, 7} as digits.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 31, 37, 53, 71, 73, 113, 131, 137, 151, 157, 173, 311, 313, 317, 331, 337, 353, 373, 557, 571, 577, 733, 751, 757, 773, 1117, 1151, 1153, 1171, 1373, 1511, 1531, 1553, 1571, 1733, 1753, 1777, 3137, 3313, 3331, 3371, 3373, 3511, 3517, 3533
Offset: 1

Views

Author

Jason Bard, Jul 17 2025

Keywords

Crossrefs

Supersequence of A087363, A260224, A260379, A260828.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 3, 5, 7]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 3, 5, 7}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 3, 5, 7]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1357"), 41))) # uses function/imports in A385776
    

A386120 Primes having only {1, 4, 5, 7} as digits.

Original entry on oeis.org

5, 7, 11, 17, 41, 47, 71, 151, 157, 457, 541, 547, 557, 571, 577, 751, 757, 1117, 1151, 1171, 1447, 1451, 1471, 1511, 1571, 1741, 1747, 1777, 4111, 4157, 4177, 4441, 4447, 4451, 4457, 4517, 4547, 4751, 5147, 5171, 5417, 5441, 5471, 5477, 5557, 5711, 5717, 5741
Offset: 1

Views

Author

Jason Bard, Jul 17 2025

Keywords

Crossrefs

Supersequence of A079651, A217039, A260268, A260828.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 4, 5, 7]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 4, 5, 7}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 4, 5, 7]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1457"), 41))) # uses function/imports in A385776
    

A386129 Primes having only {1, 5, 6, 7} as digits.

Original entry on oeis.org

5, 7, 11, 17, 61, 67, 71, 151, 157, 167, 557, 571, 577, 617, 661, 677, 751, 757, 761, 1117, 1151, 1171, 1511, 1567, 1571, 1657, 1667, 1777, 5167, 5171, 5557, 5651, 5657, 5711, 5717, 6151, 6551, 6571, 6577, 6661, 6761, 7151, 7177, 7517, 7561, 7577, 7717, 7757
Offset: 1

Views

Author

Jason Bard, Jul 17 2025

Keywords

Crossrefs

Supersequence of A260828, A260829, A260891, A385779.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 5, 6, 7]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 5, 6, 7}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 5, 6, 7]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1567"), 41))) # uses function/imports in A385776
    

A386132 Primes having only {1, 5, 7, 8} as digits.

Original entry on oeis.org

5, 7, 11, 17, 71, 151, 157, 181, 557, 571, 577, 587, 751, 757, 787, 811, 857, 877, 881, 887, 1117, 1151, 1171, 1181, 1187, 1511, 1571, 1777, 1787, 1811, 1871, 1877, 5171, 5557, 5581, 5711, 5717, 5851, 5857, 5881, 7151, 7177, 7187, 7517, 7577, 7717, 7757, 7817
Offset: 1

Views

Author

Jason Bard, Jul 17 2025

Keywords

Crossrefs

Supersequence of A260828, A260830, A260892, A385780.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 5, 7, 8]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 5, 7, 8}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 5, 7, 8]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1578"), 41))) # uses function/imports in A385776
    

A386133 Primes having only {1, 5, 7, 9} as digits.

Original entry on oeis.org

5, 7, 11, 17, 19, 59, 71, 79, 97, 151, 157, 179, 191, 197, 199, 557, 571, 577, 599, 719, 751, 757, 797, 911, 919, 971, 977, 991, 997, 1117, 1151, 1171, 1511, 1559, 1571, 1579, 1597, 1759, 1777, 1951, 1979, 1997, 1999, 5119, 5171, 5179, 5197, 5519, 5557, 5591
Offset: 1

Views

Author

Jason Bard, Jul 17 2025

Keywords

Crossrefs

Supersequence of A260828, A260831, A260893, A385781.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 5, 7, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 5, 7, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 5, 7, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1579"), 41))) # uses function/imports in A385776
    
Showing 1-9 of 9 results.