A260890 The number of overpartitions of n with restricted odd differences.
1, 1, 3, 3, 8, 9, 18, 21, 39, 46, 78, 93, 150, 180, 276, 333, 494, 597, 858, 1038, 1458, 1764, 2424, 2931, 3960, 4783, 6360, 7671, 10068, 12123, 15720, 18894, 24249, 29088, 36978, 44268, 55808, 66672, 83406, 99435, 123540, 146973, 181440, 215406, 264390, 313236, 382404, 452130, 549258
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- K. Bringmann, J. Dousse, J. Lovejoy, and K. Mahlburg, Overpartitions with restricted odd differences, Electron. J. Combin. 22 (2015), no.3, paper 3.17.
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d*[1,1,2,0,2,1] [irem(d, 6)+1], d=divisors(j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..60); # Alois P. Heinz, Aug 08 2015
-
Mathematica
QP = QPochhammer; QP[q^3]/(QP[q] QP[q^2]) + O[q]^50 // CoefficientList[#, q]& (* Jean-François Alcover, Mar 23 2017 *)
Formula
G.f.: Product_{n >= 1} (1-q^(3*n))/((1-q^n)*(1-q^(2*n))).
a(n) ~ sqrt(21) * exp(Pi*sqrt(7*n)/3) / (36*n). - Vaclav Kotesovec, Jun 13 2019
Comments