cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260890 The number of overpartitions of n with restricted odd differences.

Original entry on oeis.org

1, 1, 3, 3, 8, 9, 18, 21, 39, 46, 78, 93, 150, 180, 276, 333, 494, 597, 858, 1038, 1458, 1764, 2424, 2931, 3960, 4783, 6360, 7671, 10068, 12123, 15720, 18894, 24249, 29088, 36978, 44268, 55808, 66672, 83406, 99435, 123540, 146973, 181440, 215406, 264390, 313236, 382404, 452130, 549258
Offset: 0

Views

Author

Jeremy Lovejoy, Aug 06 2015

Keywords

Comments

The number of overpartitions of n where (i) the difference between successive parts may be odd only if the larger is overlined and (ii) if the smallest part is overlined, then it is odd.

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember;
          `if`(n=0, 1, add(add(d*[1,1,2,0,2,1]
          [irem(d, 6)+1], d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Aug 08 2015
  • Mathematica
    QP = QPochhammer; QP[q^3]/(QP[q] QP[q^2]) + O[q]^50 // CoefficientList[#, q]& (* Jean-François Alcover, Mar 23 2017 *)

Formula

G.f.: Product_{n >= 1} (1-q^(3*n))/((1-q^n)*(1-q^(2*n))).
a(n) ~ sqrt(21) * exp(Pi*sqrt(7*n)/3) / (36*n). - Vaclav Kotesovec, Jun 13 2019