cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260917 Expansion of 1/(1 - x - x^2 - x^3 + x^6 + x^7).

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 23, 41, 74, 132, 236, 422, 754, 1348, 2409, 4305, 7694, 13750, 24573, 43915, 78481, 140255, 250652, 447944, 800528, 1430636, 2556712, 4569140, 8165581, 14592837, 26079086, 46606340, 83290915, 148850489, 266013023, 475396009, 849587598, 1518311204, 2713397556, 4849154954, 8666000202
Offset: 0

Views

Author

David Neil McGrath, Aug 04 2015

Keywords

Comments

This sequence counts the partially ordered partitions of (n) into parts 1,2,3,4 where the order (position) of adjacent pairs (1,3);(3,4);(2,4) is unimportant. Alternatively the order of complementary pairs (1,2);(1,4);(2,3) is important.

Examples

			a(7)=41; the corresponding partitions (cf. comment) are: (43), (241=421), (124=142), (412), (214), (4111), (1411), (1141), (1114), (331=313=133), (322), (232), (223), (3112=1312=1132), (2113=2131=2311), (1213=1231), (3121=1321), (3211), (1123), (31111=13111=11311=11131=11113), (2221)=four, (22111)=ten, (211111)=six, (1111111).
		

Crossrefs

Programs

  • Magma
    I:=[1,1,2,4,7,13,23]; [n le 7 select I[n] else Self(n-1) + Self(n-2) + Self(n-3) - Self(n-6) - Self(n-7): n in [1..45]]; // Vincenzo Librandi, Aug 07 2015
  • Mathematica
    CoefficientList[Series[1/(1 - x - x^2 - x^3 + x^6 + x^7), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 07 2015 *)
    LinearRecurrence[{1,1,1,0,0,-1,-1},{1,1,2,4,7,13,23},50] (* Harvey P. Dale, Aug 21 2021 *)
  • PARI
    Vec(1/(1 - x - x^2 - x^3 + x^6 + x^7) + O(x^50)) \\ Michel Marcus, Aug 06 2015
    

Formula

a(n) = a(n-1) + a(n-2) + a(n-3) - a(n-6) - a(n-7).
G.f.: 1/((1 - x)*(1 - x^2 - 2*x^3 - 2*x^4 - 2*x^5 - x^6)).