cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A086053 Decimal expansion of Lengyel's constant L.

Original entry on oeis.org

1, 0, 9, 8, 6, 8, 5, 8, 0, 5, 5, 2, 5, 1, 8, 7, 0, 1, 3, 0, 1, 7, 7, 4, 6, 3, 2, 5, 7, 2, 1, 3, 3, 1, 8, 0, 7, 9, 3, 1, 2, 2, 2, 0, 7, 1, 0, 6, 4, 4, 2, 6, 8, 4, 0, 7, 4, 1, 0, 4, 2, 7, 8, 1, 5, 7, 8, 3, 2, 1, 7, 4, 4, 3, 6, 9, 6, 6, 5, 6, 0, 8, 2, 3, 2, 2, 4, 2, 3, 9, 1, 7, 4, 4, 7, 4, 9, 7, 9, 9, 0, 6, 6, 0, 5
Offset: 1

Views

Author

Eric W. Weisstein, Jul 07 2003

Keywords

Comments

L - log(Pi-1)/log(2) ~ 0.00000171037285384 ~ 1/Pi^11.5999410273. - Gerald McGarvey, Aug 17 2004

Examples

			1.0986858055251870130177463257213318079312220710644268407410427815783217...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 319 and 556.

Crossrefs

Formula

Equals lim_{n->oo} A005121(n) * (2*log(2))^n * n^(1+log(2)/3) / n!^2. - Amiram Eldar, Jun 27 2021

Extensions

More terms from Vaclav Kotesovec, Mar 11 2014

A086555 E.g.f. satisfies F(x) = 1/2 * (F(-log(1-x)) + x).

Original entry on oeis.org

1, 1, 5, 47, 719, 16299, 513253, 21430513, 1145710573, 76317960163, 6197399680779, 602640663660199, 69134669061681469, 9239224408001877873, 1422887941494773642817, 250160794466824215921275
Offset: 1

Views

Author

Vladeta Jovovic, Sep 14 2003

Keywords

Crossrefs

For a signed version see A246040.

Programs

  • Mathematica
    Clear[a]; a[1] = 1; a[n_] := a[n] = Sum[Abs[StirlingS1[n, k]]*a[k], {k, 1, n-1}]; Table[a[n], {n, 1, 20}] (* Vaclav Kotesovec, May 29 2019 *)

Formula

a(n) = Sum_{k=1..n-1} |Stirling1(n, k)|*a(k).
a(n) ~ A260932 * n!^2 / (2^n * log(2)^n * n^(1 - log(2)/3)). - Vaclav Kotesovec, Jul 01 2025

A246040 a(1)=1; a(n)=Sum_{k=1..n-1} Stirling_1(n,k)*a(k).

Original entry on oeis.org

1, -1, 5, -47, 719, -16299, 513253, -21430513, 1145710573, -76317960163, 6197399680779, -602640663660199, 69134669061681469, -9239224408001877873, 1422887941494773642817, -250160794466824215921275, 49797413478450579190546203, -11142367835115998962269070519, 2784355004138005473128335461749
Offset: 1

Views

Author

N. J. A. Sloane, Aug 22 2014

Keywords

Comments

2*Sum_{k>=1} a(k-1)/fallfac(n,k) = -1/n + Sum_{k>=1} (1 + a(k-1))/n^k, with the falling factorials fallfac(n,k) = Product_{j=0..k-1}(n-j). - Vaclav Kotesovec, Aug 04 2015

Crossrefs

A signed version of A086555.

Programs

  • Maple
    with(combinat);
    Y:=proc(n) option remember; local k; if n=1 then 1 else add(stirling1(n,k)*Y(k),k=1..n-1); fi; end;
    [seq(Y(n),n=1..35)];
  • Mathematica
    Clear[a]; a[1] = 1; a[n_] := a[n] = Sum[StirlingS1[n, k]*a[k], {k, 1, n-1}]; Table[a[n], {n, 1, 20}] (* Vaclav Kotesovec, Aug 04 2015 *)

Formula

a(n) ~ (-1)^(n+1) * c * n!^2 / (n^(1-log(2)/3) * (2*log(2))^n), where c = A260932 = 0.9031646749584662473216609915945142350500875792441051556... . - Vaclav Kotesovec, Aug 04 2015

A385521 Decimal expansion of a constant related to A375838.

Original entry on oeis.org

1, 5, 9, 5, 8, 5, 4, 3, 3, 0, 5, 0, 0, 3, 6, 6, 2, 1, 2, 4, 7, 0, 0, 6, 5, 6, 9, 7, 4, 0, 0, 1, 6, 5, 1, 6, 9, 6, 4, 5, 0, 2, 5, 0, 5, 8, 4, 8, 3, 2, 4, 0, 6, 4, 2, 4, 7, 9, 4, 1, 8, 9, 0, 9, 3, 4, 1, 1, 9, 1, 0, 3, 8, 6, 1, 2, 7, 7, 4, 3, 8, 1, 3, 9, 3, 5, 8, 2, 4, 0, 2, 3, 5, 5, 5, 9, 9, 6, 5, 8, 7, 7, 1, 8, 3
Offset: 1

Views

Author

Vaclav Kotesovec, Jul 01 2025

Keywords

Comments

Variant of Lengyel's constant A086053.

Examples

			1.59585433050036621247006569740016516964502505848324064247941890934119103861277...
		

Crossrefs

Formula

Equals lim_{n->oo} A375838(n) * 2^n * log(2)^n * n^(1-log(2)/3) / n!^2.
Showing 1-4 of 4 results.