cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A086053 Decimal expansion of Lengyel's constant L.

Original entry on oeis.org

1, 0, 9, 8, 6, 8, 5, 8, 0, 5, 5, 2, 5, 1, 8, 7, 0, 1, 3, 0, 1, 7, 7, 4, 6, 3, 2, 5, 7, 2, 1, 3, 3, 1, 8, 0, 7, 9, 3, 1, 2, 2, 2, 0, 7, 1, 0, 6, 4, 4, 2, 6, 8, 4, 0, 7, 4, 1, 0, 4, 2, 7, 8, 1, 5, 7, 8, 3, 2, 1, 7, 4, 4, 3, 6, 9, 6, 6, 5, 6, 0, 8, 2, 3, 2, 2, 4, 2, 3, 9, 1, 7, 4, 4, 7, 4, 9, 7, 9, 9, 0, 6, 6, 0, 5
Offset: 1

Views

Author

Eric W. Weisstein, Jul 07 2003

Keywords

Comments

L - log(Pi-1)/log(2) ~ 0.00000171037285384 ~ 1/Pi^11.5999410273. - Gerald McGarvey, Aug 17 2004

Examples

			1.0986858055251870130177463257213318079312220710644268407410427815783217...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 319 and 556.

Crossrefs

Formula

Equals lim_{n->oo} A005121(n) * (2*log(2))^n * n^(1+log(2)/3) / n!^2. - Amiram Eldar, Jun 27 2021

Extensions

More terms from Vaclav Kotesovec, Mar 11 2014

A260932 Decimal expansion of a constant related to A246040.

Original entry on oeis.org

9, 0, 3, 1, 6, 4, 6, 7, 4, 9, 5, 8, 4, 6, 6, 2, 4, 7, 3, 2, 1, 6, 6, 0, 9, 9, 1, 5, 9, 4, 5, 1, 4, 2, 3, 5, 0, 5, 0, 0, 8, 7, 5, 7, 9, 2, 4, 4, 1, 0, 5, 1, 5, 5, 6, 2, 9, 7, 8, 8, 9, 9, 3, 1, 6, 8, 5, 7, 6, 1, 3, 4, 6, 2, 8, 1, 6, 8, 3, 0, 2, 2, 3, 1, 1, 0, 7, 9, 9, 9, 8, 3, 6, 9, 4, 4, 3, 0, 1, 5, 5, 7, 5, 1, 4, 9, 8, 2
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 04 2015

Keywords

Comments

Variant of Lengyel's constant A086053.

Examples

			0.9031646749584662473216609915945142350500875792441051556...
		

Crossrefs

Formula

Equals lim_{n->oo} A246040(n) / ((-1)^(n+1)*(n!)^2/(n^(1-log(2)/3)*(2*log(2))^n)).
Equals lim_{n->oo} A086555(n) * 2^n * log(2)^n * n^(1 - log(2)/3) / n!^2. - Vaclav Kotesovec, Jul 01 2025

A375838 Number of rooted chains starting with the cycle (1)(2)(3)...(n) in the permutation poset of [n].

Original entry on oeis.org

1, 1, 2, 9, 83, 1270, 28799, 906899, 37866842, 2024422837, 134850653405, 10950546880152, 1064840930492393, 122158078221727119, 16325324374155336370, 2514183676808883419043, 442023695390488997377405, 87989953715757624724243004, 19688099473681895327628896249, 4919839221134662388853128069571, 1365091729320293490230304687026514
Offset: 0

Views

Author

Rajesh Kumar Mohapatra, Subhashree Sahoo, and Ranjan Kumar Dhani, Sep 10 2024

Keywords

Examples

			Consider the set S = {1, 2, 3}. The a(3) = 1 + 5 + 3 = 9 in the poset of permutations of {1,2,3}:
 |{(1)(2)(3)}| = 1;
 |{(1)(2)(3) < (1)(23), (1)(2)(3) < (2)(13), (1)(2)(3) < (3)(12), (1)(2)(3) < (123), (1)(2)(3) < (132)}|=5;
 |{(1)(2)(3) < (1)(23) < (123), (1)(2)(3) < (2)(13)< (132), (1)(2)(3) < (3)(12) < (123)}| = 3.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          1+add(abs(Stirling1(n, k))*a(k), k=1..n-1)
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 01 2025
  • Mathematica
    T[n_, k_] := T[n, k] = If[k < 0 || k > n, 0, If[(n == 0 && k == 0) || k == 1, 1, Sum[If[r >= 0, Abs[StirlingS1[n, r]]*T[r, k - 1], 0], {r, k - 1, n - 1}]]]; Table[Sum[T[n, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 01 2025, after A375837 *)

Formula

a(n) = Sum_{k=0..n} A375837(n,k).
a(n) = (A375836(n)+1)/2.
Conjecture: a(n) = R(n,0) where R(n,k) = (k+1) * (Sum_{i=0..n-1} R(n-1,i) + Sum_{j=0..k-1} R(n-1,j)) for 0 <= k < n, R(n,n) = 1. - Mikhail Kurkov, Jun 21 2025
a(n) ~ c * n!^2 / (2^n * log(2)^n * n^(1-log(2)/3)), where c = A385521 = 1.59585433050036621247006569740016516964502505848324064247941890934119103861277... - Vaclav Kotesovec, Jul 01 2025
a(n) = 1 + Sum_{k=1..n-1} abs(Stirling1(n,k))*a(k). - Rajesh Kumar Mohapatra, Jul 01 2025
Showing 1-3 of 3 results.