cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A385521 Decimal expansion of a constant related to A375838.

Original entry on oeis.org

1, 5, 9, 5, 8, 5, 4, 3, 3, 0, 5, 0, 0, 3, 6, 6, 2, 1, 2, 4, 7, 0, 0, 6, 5, 6, 9, 7, 4, 0, 0, 1, 6, 5, 1, 6, 9, 6, 4, 5, 0, 2, 5, 0, 5, 8, 4, 8, 3, 2, 4, 0, 6, 4, 2, 4, 7, 9, 4, 1, 8, 9, 0, 9, 3, 4, 1, 1, 9, 1, 0, 3, 8, 6, 1, 2, 7, 7, 4, 3, 8, 1, 3, 9, 3, 5, 8, 2, 4, 0, 2, 3, 5, 5, 5, 9, 9, 6, 5, 8, 7, 7, 1, 8, 3
Offset: 1

Views

Author

Vaclav Kotesovec, Jul 01 2025

Keywords

Comments

Variant of Lengyel's constant A086053.

Examples

			1.59585433050036621247006569740016516964502505848324064247941890934119103861277...
		

Crossrefs

Formula

Equals lim_{n->oo} A375838(n) * 2^n * log(2)^n * n^(1-log(2)/3) / n!^2.

A375836 Number of chains in the poset of permutations of [n].

Original entry on oeis.org

1, 1, 3, 17, 165, 2539, 57597, 1813797, 75733683, 4048845673, 269701306809, 21901093760303, 2129681860984785, 244316156443454237, 32650648748310672739, 5028367353617766838085, 884047390780977994754809, 175979907431515249448486007, 39376198947363790655257792497
Offset: 0

Views

Author

Rajesh Kumar Mohapatra, Aug 31 2024

Keywords

Examples

			Consider the set S = {1, 2, 3}. The a(3) = 6 + 8 + 3 = 17 in the poset of permutations of {1,2,3}:
|{(1)(2)(3), (1)(23), (2)(13), (3)(12), (123), (132)}| = 6;
|{(1)(2)(3) < (1)(23), (1)(2)(3) < (2)(13), (1)(2)(3) < (3)(12), (1)(2)(3) < (123),(1)(2)(3) < (132), (1)(23) < (123), (2)(13) < (132), (3)(12) < (123)}|=8;
|{(1)(2)(3) < (1)(23) < (123), (1)(2)(3) < (2)(13) < (132), (1)(2)(3) < (3)(12) < (123)}| = 3.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          n!+add(abs(Stirling1(n, k))*a(k), k=1..n-1)
        end:
    seq(a(n), n=0..18);  # Alois P. Heinz, Jul 01 2025
  • Mathematica
    b[n_, k_, t_] := b[n, k, t] = If[k < 0, 0, If[Union@{n, k} == {0}, 1, Sum[If[k == 1, 1, b[v, k - 1, 1]]*Abs[StirlingS1[n, v]], {v, k, n - t}]]];
    a[n_] := Sum[b[n, k, 0], {k, 0, n}]; a /@ Range[0, 20]
  • Python
    from math import factorial as f
    from sympy.functions.combinatorial.numbers import stirling as s
    from functools import cache
    @cache
    def a(n): return f(n) + sum(abs(s(n, k, kind=1)) * a(k) for k in range(1, n)) # David Radcliffe, Jul 01 2025

Formula

a(n) = Sum_{k=0..n} A375835(n,k).
a(n) = n! + Sum_{k=1..n-1} abs(Stirling1(n,k))*a(k). - Rajesh Kumar Mohapatra, Jul 01 2025
a(n) = 2 * A375838(n) - 1. - Rajesh Kumar Mohapatra, Jul 01 2025

A375837 Triangle read by rows: T(n,k) is the number of rooted chains starting with the cycle (1)(2)(3)...(n) of length k of permutation poset of n letters.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 5, 3, 0, 1, 23, 41, 18, 0, 1, 119, 455, 515, 180, 0, 1, 719, 5139, 10985, 9255, 2700, 0, 1, 5039, 62713, 222551, 334040, 225855, 56700, 0, 1, 40319, 840265, 4619447, 10899840, 12686030, 7193340, 1587600, 0, 1, 362879, 12383329, 101128653, 350413245, 620801580, 592261110, 289918440, 57153600
Offset: 0

Views

Author

Rajesh Kumar Mohapatra, Ranjan Kumar Dhani, and Subhashree Sahoo, Aug 31 2024

Keywords

Examples

			Triangle T(n,k) begins:
  n\k | 0  1   2     3     4      5      6     7 ...
 -----+-----------------------------------------
  0   | 1;
  1   | 0, 1;
  2   | 0, 1, 1;
  3   | 0, 1, 5, 3;
  4   | 0, 1, 23, 41, 18;
  5   | 0, 1, 119, 455, 515, 180;
  6   | 0, 1, 719, 5139, 10985, 9255, 2700;
  7   | 0, 1, 5039, 62713, 222551, 334040, 225855, 56700;
  ...
The T(3, 2) = 5 chains in the poset of the permutations of {1, 2, 3} are: {(1)(2)(3) < (1)(23), (1)(2)(3) < (2)(13), (1)(2)(3) < (3)(12), (1)(2)(3) < (123),(1)(2)(3) < (132)}.
		

Crossrefs

Cf. A000007 (column k=0), A057427 (column k=1), A006472 (diagonal), A375838 (row sums).

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = If[k < 0 || k > n, 0, If[(n == 0 && k == 0) || k == 1, 1, Sum[If[r >= 0, Abs[StirlingS1[n, r]]*T[r, k - 1], 0], {r, k - 1, n - 1}]]]; Table[T[n, k], {n, 0, 20}, {k, 0, n}] // Flatten (* corrected Jul 01 2025 *)

Formula

Let Stirling1(n, k) denote the unsigned Stirling numbers of the first kind (A132393).
T(0, 0) = 1, T(0, k) = 0 for k > 0 and T(n, 1) = 1 for n > 1.
T(n, k) = Sum_{i_(k-1)=k-1..n-1} (Sum_{i_(k-2)=k-2..i_(k-1) - 1} (... (Sum_{i_2=2..i_3 - 1} (Sum_{i_1=1..i_2 - 1} Stirling1(n,i_(k-1)) * Stirling1(i_(k-1),i_(k-2)) * ... * Stirling1(i_3,i_2) * Stirling1(i_2,i_1)))...)), where 2 <= k <= n.
Showing 1-3 of 3 results.