A375838
Number of rooted chains starting with the cycle (1)(2)(3)...(n) in the permutation poset of [n].
Original entry on oeis.org
1, 1, 2, 9, 83, 1270, 28799, 906899, 37866842, 2024422837, 134850653405, 10950546880152, 1064840930492393, 122158078221727119, 16325324374155336370, 2514183676808883419043, 442023695390488997377405, 87989953715757624724243004, 19688099473681895327628896249, 4919839221134662388853128069571, 1365091729320293490230304687026514
Offset: 0
Consider the set S = {1, 2, 3}. The a(3) = 1 + 5 + 3 = 9 in the poset of permutations of {1,2,3}:
|{(1)(2)(3)}| = 1;
|{(1)(2)(3) < (1)(23), (1)(2)(3) < (2)(13), (1)(2)(3) < (3)(12), (1)(2)(3) < (123), (1)(2)(3) < (132)}|=5;
|{(1)(2)(3) < (1)(23) < (123), (1)(2)(3) < (2)(13)< (132), (1)(2)(3) < (3)(12) < (123)}| = 3.
-
a:= proc(n) option remember;
1+add(abs(Stirling1(n, k))*a(k), k=1..n-1)
end:
seq(a(n), n=0..20); # Alois P. Heinz, Jul 01 2025
-
T[n_, k_] := T[n, k] = If[k < 0 || k > n, 0, If[(n == 0 && k == 0) || k == 1, 1, Sum[If[r >= 0, Abs[StirlingS1[n, r]]*T[r, k - 1], 0], {r, k - 1, n - 1}]]]; Table[Sum[T[n, k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 01 2025, after A375837 *)
A375835
Triangle read by rows: T(n, k) is the number of chains of length k in the poset of permutations of an n-set.
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 6, 8, 3, 0, 24, 64, 59, 18, 0, 120, 574, 970, 695, 180, 0, 720, 5858, 16124, 20240, 11955, 2700, 0, 5040, 67752, 285264, 556591, 559895, 282555, 56700, 0, 40320, 880584, 5459712, 15519287, 23585870, 19879370, 8780940, 1587600, 0, 362880, 12746208, 113511982, 451541898, 971214825, 1213062690, 882179550, 347072040, 57153600
Offset: 0
The triangle T(n,k) begins:
n\k 0 1 2 3 4 5 6 7 ...
0 1
1 0 1
2 0 2 1
3 0 6 8 3
4 0 24 64 59 18
5 0 120 574 970 695 180
6 0 720 5858 16124 20240 11955 2700
7 0 5040 67752 285264 556591 559895 282555 56700
...
The T(3, 2) = 8 chains in the poset of the permutations of {1, 2, 3} are:
{(1)(2)(3) < (1)(23), (1)(2)(3) < (2)(13), (1)(2)(3) < (3)(12), (1)(2)(3) < (123),(1)(2)(3) < (132), (1)(23) < (123), (2)(13) < (132), (3)(12) < (123)}.
-
b := proc(n, k, t) option remember; if k < 0 then return 0 fi; if {n, k} = {0} then return 1 fi; add(ifelse(k = 1, 1, b(v, k - 1, 1))*abs(Stirling1(n, v)), v = k..n-t) end: T := (n, k) -> b(n, k, 0): seq((seq(T(n, k), k=0..n)), n = 0..10); # Peter Luschny, Sep 05 2024
-
b[n_, k_, t_] := b[n, k, t] = If[k < 0, 0, If[n == 0 && k == 0, 1,
Sum[If[k == 1, 1, b[v, k - 1, 1]] * Abs[StirlingS1[n, v]], {v, k, n - t}]]];
T[n_, k_] := b[n, k, 0]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]
A375837
Triangle read by rows: T(n,k) is the number of rooted chains starting with the cycle (1)(2)(3)...(n) of length k of permutation poset of n letters.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 5, 3, 0, 1, 23, 41, 18, 0, 1, 119, 455, 515, 180, 0, 1, 719, 5139, 10985, 9255, 2700, 0, 1, 5039, 62713, 222551, 334040, 225855, 56700, 0, 1, 40319, 840265, 4619447, 10899840, 12686030, 7193340, 1587600, 0, 1, 362879, 12383329, 101128653, 350413245, 620801580, 592261110, 289918440, 57153600
Offset: 0
Triangle T(n,k) begins:
n\k | 0 1 2 3 4 5 6 7 ...
-----+-----------------------------------------
0 | 1;
1 | 0, 1;
2 | 0, 1, 1;
3 | 0, 1, 5, 3;
4 | 0, 1, 23, 41, 18;
5 | 0, 1, 119, 455, 515, 180;
6 | 0, 1, 719, 5139, 10985, 9255, 2700;
7 | 0, 1, 5039, 62713, 222551, 334040, 225855, 56700;
...
The T(3, 2) = 5 chains in the poset of the permutations of {1, 2, 3} are: {(1)(2)(3) < (1)(23), (1)(2)(3) < (2)(13), (1)(2)(3) < (3)(12), (1)(2)(3) < (123),(1)(2)(3) < (132)}.
-
T[n_, k_] := T[n, k] = If[k < 0 || k > n, 0, If[(n == 0 && k == 0) || k == 1, 1, Sum[If[r >= 0, Abs[StirlingS1[n, r]]*T[r, k - 1], 0], {r, k - 1, n - 1}]]]; Table[T[n, k], {n, 0, 20}, {k, 0, n}] // Flatten (* corrected Jul 01 2025 *)
Showing 1-3 of 3 results.