A260956 a(0)=1; a(n) = Sum_{k=1..n-1} d(k)*a(n-k), where d(m) is m-th bit in binary expansion of n.
1, 1, 1, 2, 2, 3, 5, 10, 10, 13, 23, 43, 66, 122, 231, 462, 462, 528, 759, 1452, 1980, 3201, 5412, 9603, 15015, 26598, 47025, 88638, 162261, 312939, 610863, 1221726, 1221726, 1310364, 1623303, 2547105, 3768831, 6300921, 9234588, 14715360, 21016281, 32797974
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..4575 (terms n = 1..1000 from Anders Hellström)
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, (l-> add( a(n-i)*l[-i], i=1..nops(l)))(convert(n, base, 2))) end: seq(a(n), n=0..50); # Alois P. Heinz, Jan 18 2019
-
Mathematica
a[0] = 1; a[n_] := a[n] = Total[(d = IntegerDigits[n, 2]) * Table[a[n - k], {k, 1, Length[d]}]]; Array[a, 50, 0] (* Amiram Eldar, Jul 25 2023 *)
-
PARI
first(m)=my(v=vector(m));v[1]=1;v[2]=1;for(i=3,m,v[i]=0;d=digits(i,2);for(j=1,#d,v[i]+=d[j]*v[i-j]));v
-
PARI
lista(nn) = {my(va = vector(nn), vb); va[1] = 1; for (n=2, nn, vb = binary(n); va[n] = sum(k=1, #vb, vb[k]*(if (n==k, 1, va[n-k])));); concat(1, va);} \\ Michel Marcus, Jan 12 2019
Extensions
a(0)=1 prepended by Alois P. Heinz, Jan 18 2019