cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A371928 T(n,k) is the total number of levels in all Dyck paths of semilength n containing exactly k path nodes; triangle T(n,k), n>=0, 1<=k<=n+1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 3, 5, 6, 1, 8, 15, 13, 11, 1, 23, 44, 43, 29, 20, 1, 71, 134, 138, 106, 62, 37, 1, 229, 427, 446, 371, 248, 132, 70, 1, 759, 1408, 1478, 1275, 941, 571, 283, 135, 1, 2566, 4753, 5017, 4410, 3437, 2331, 1310, 611, 264, 1, 8817, 16321, 17339, 15458, 12426, 9027, 5709, 3002, 1324, 521, 1
Offset: 0

Views

Author

Alois P. Heinz, Apr 14 2024

Keywords

Comments

A Dyck path of semilength n has 2n+1 = A005408(n) nodes.

Examples

			In the A000108(3) = 5 Dyck paths of semilength 3 there are 3 levels with 1 node, 5 levels with 2 nodes, 6 levels with 3 nodes, and 1 level with 4 nodes.
  1
  2   /\      2           1           1
  2  /  \     3  /\/\     3  /\       3    /\     3
  2 /    \    2 /    \    3 /  \/\    3 /\/  \    4 /\/\/\    .
  So row 3 is [3, 5, 6, 1].
Triangle T(n,k) begins:
     1;
     1,     1;
     1,     3,     1;
     3,     5,     6,     1;
     8,    15,    13,    11,     1;
    23,    44,    43,    29,    20,    1;
    71,   134,   138,   106,    62,   37,    1;
   229,   427,   446,   371,   248,  132,   70,    1;
   759,  1408,  1478,  1275,   941,  571,  283,  135,    1;
  2566,  4753,  5017,  4410,  3437, 2331, 1310,  611,  264,   1;
  8817, 16321, 17339, 15458, 12426, 9027, 5709, 3002, 1324, 521, 1;
  ...
		

Crossrefs

Columns k=1-2 give: A152880, A371903.
Row sums give A261003.
T(n+1,n+1) gives A006127.

Programs

  • Maple
    g:= proc(x, y, p) (h-> `if`(x=0, add(z^coeff(h, z, i)
              , i=0..degree(h)), b(x, y, h)))(p+z^y) end:
    b:= proc(x, y, p) option remember; `if`(y+2<=x,
          g(x-1, y+1, p), 0)+`if`(y>0, g(x-1, y-1, p), 0)
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=1..n+1))(g(2*n, 0$2)):
    seq(T(n), n=0..10);

Formula

Sum_{k=1..n+1} k * T(n,k) = A001700(n) = A005408(n) * A000108(n).

A136439 Sum of heights of all 1-watermelons with wall of length 2*n.

Original entry on oeis.org

1, 3, 10, 34, 118, 417, 1495, 5421, 19838, 73149, 271453, 1012872, 3797228, 14294518, 54006728, 204702328, 778115558, 2965409556, 11327549778, 43361526366, 166306579062, 638969153207, 2458973656584, 9477124288144, 36576265716636, 141344492073392, 546860238004919
Offset: 1

Views

Author

Steven Finch, Apr 02 2008

Keywords

Comments

a(n) is the sum of heights of all Dyck excursions of length 2*n (nonnegative walks beginning and ending at 0 with jumps -1,+1).

References

  • N. G. de Bruijn, D. E. Knuth and S. O. Rice, The average height of planted plane trees, in: Graph Theory and Computing (ed. T. C. Read), Academic Press, New York, 1972, pp. 15-22.

Crossrefs

Programs

  • Maple
    H[0]:=1: for k to 30 do H[k]:=simplify(1/(1-z*H[k-1])) end do: g:=sum(j*(H[j]-H[j-1]),j=1..30): gser:=series(g,z=0,27): seq(coeff(gser,z,n),n=1..24); # Emeric Deutsch, Apr 13 2008
    # second Maple program:
    b:= proc(x, y, h) option remember; `if`(x=0, h, add(`if`(x+j>y,
          b(x-1, y-j, max(h, y-j)), 0), j={$-1..min(1, y)} minus {0}))
        end:
    a:= n-> b(2*n, 0$2):
    seq(a(n), n=1..33);  # Alois P. Heinz, Mar 24 2020
  • Mathematica
    c[n_] := (2*n)!/(n!*(n+1)!)
    s[n_,a_] := Sum[If[k < 1, 0, DivisorSigma[0,k]*Binomial[2*n,n+a-k]/Binomial[2*n,n]], {k,a-n,a+n}]
    h[n_] := (n+1)*(s[n,1]-2*s[n,0]+s[n,-1]) - 1
    a[n_] := h[n]*c[n]
  • PARI
    \\ Translation of Mathematica code
    s(n,a)=sum(k=1,a+n, numdiv(k)*binomial(2*n,n+a-k))/binomial(2*n,n)
    a(n)=((n+1)*(s(n,1)-2*s(n,0)+s(n,-1))-1)*binomial(2*n,n)/(n+1) \\ Charles R Greathouse IV, Mar 28 2016

Formula

G.f.: Sum_{k >= 1} k*(H[k]-H[k-1]), where H[0]=1 and H[k]=1/(1-zH[k-1]) for k=1,2,... (the first Maple program makes use of this g.f.). - Emeric Deutsch, Apr 13 2008

Extensions

More terms from Alois P. Heinz, Mar 24 2020

A372033 The total number of levels visited by all Motzkin paths of length n.

Original entry on oeis.org

1, 1, 3, 7, 18, 46, 121, 323, 875, 2395, 6611, 18371, 51337, 144145, 406420, 1150126, 3265412, 9298372, 26547710, 75978322, 217921336, 626287520, 1803176384, 5200298000, 15020569818, 43447201226, 125837214564, 364911724264, 1059404265599, 3078918594707
Offset: 0

Views

Author

Alois P. Heinz, Apr 16 2024

Keywords

Crossrefs

Row sums of A372014.

Programs

  • Maple
    b:= proc(x, y, h) option remember; `if`(x=0, h+1, add(
          b(x-1, y+j, max(h, y)), j=-min(1, y)..min(1, x-y-1)))
        end:
    a:= n-> b(n, 0$2):
    seq(a(n), n=0..35);

Formula

a(n) = A001006(n) + A333498(n).
Showing 1-3 of 3 results.