A261011 Positive integers n such that ceiling(n^(1/3)) divides n.
1, 2, 4, 6, 8, 9, 12, 15, 18, 21, 24, 27, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 126, 132, 138, 144, 150, 156, 162, 168, 174, 180, 186, 192, 198, 204, 210, 216, 217, 224, 231, 238, 245, 252, 259
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[n: n in [1..400] | n mod Ceiling((n^(1/3))) eq 0 ]; // Vincenzo Librandi, Aug 15 2015
-
Maple
p:=3; a:=[]; M:=200; Digits:=30; for n from 1 to M do # is n a p-th power? t1:=round(evalf(n^(1/p))); if t1^p = n then a:=[op(a),n]; else t2:=ceil(evalf(n^(1/p))); if (n mod t2) = 0 then a:=[op(a),n]; fi; fi; od: a;
-
PARI
is(n)=n%ceiling(n^(1/3))==0 \\ Anders Hellström, Aug 15 2015
-
Python
from gmpy2 import iroot A261011_list = [n for n in range(1,10**5) if not n % (lambda x:x[0] + (0 if x[1] else 1))(iroot(n,3))] # Chai Wah Wu, Aug 14 2015
Comments