cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261031 Euler transform of Lucas numbers.

Original entry on oeis.org

1, 1, 4, 8, 21, 44, 103, 217, 477, 999, 2116, 4373, 9055, 18464, 37576, 75725, 152047, 303158, 602085, 1189242, 2340065, 4584027, 8947865, 17399906, 33725509, 65153150, 125493914, 241011287, 461611911, 881806114, 1680336592, 3194346093, 6058770147, 11466709780
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 07 2015

Keywords

Crossrefs

Programs

  • Maple
    L:= proc(n) option remember; `if`(n<2, 2-n, L(n-2)+L(n-1)) end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          L(d), d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jan 12 2017
  • Mathematica
    CoefficientList[Series[Product[1/(1 - x^k)^LucasL[k], {k, 1, 30}], {x, 0, 30}], x]
  • SageMath
    # uses[EulerTransform from A166861]
    a = BinaryRecurrenceSequence(1, 1, 2)
    b = EulerTransform(a)
    print([b(n) for n in range(34)]) # Peter Luschny, Nov 11 2020

Formula

a(n) ~ phi^n / (2*sqrt(Pi)*n^(3/4)) * exp(-1 + 1/(2*sqrt(5)) + 2*sqrt(n) + s), where s = Sum_{k>=2} (2 + phi^k)/((phi^(2*k) - phi^k - 1)*k) = 0.9799662013576411396292209835034813778512885279062665867878344706... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 07 2015
G.f.: exp(Sum_{k>=1} x^k*(1 + 2*x^k)/(k*(1 - x^k - x^(2*k)))). - Ilya Gutkovskiy, May 30 2018