A261031 Euler transform of Lucas numbers.
1, 1, 4, 8, 21, 44, 103, 217, 477, 999, 2116, 4373, 9055, 18464, 37576, 75725, 152047, 303158, 602085, 1189242, 2340065, 4584027, 8947865, 17399906, 33725509, 65153150, 125493914, 241011287, 461611911, 881806114, 1680336592, 3194346093, 6058770147, 11466709780
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..2000
Programs
-
Maple
L:= proc(n) option remember; `if`(n<2, 2-n, L(n-2)+L(n-1)) end: a:= proc(n) option remember; `if`(n=0, 1, add(add(d* L(d), d=numtheory[divisors](j))*a(n-j), j=1..n)/n) end: seq(a(n), n=0..40); # Alois P. Heinz, Jan 12 2017
-
Mathematica
CoefficientList[Series[Product[1/(1 - x^k)^LucasL[k], {k, 1, 30}], {x, 0, 30}], x]
-
SageMath
# uses[EulerTransform from A166861] a = BinaryRecurrenceSequence(1, 1, 2) b = EulerTransform(a) print([b(n) for n in range(34)]) # Peter Luschny, Nov 11 2020
Formula
a(n) ~ phi^n / (2*sqrt(Pi)*n^(3/4)) * exp(-1 + 1/(2*sqrt(5)) + 2*sqrt(n) + s), where s = Sum_{k>=2} (2 + phi^k)/((phi^(2*k) - phi^k - 1)*k) = 0.9799662013576411396292209835034813778512885279062665867878344706... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 07 2015
G.f.: exp(Sum_{k>=1} x^k*(1 + 2*x^k)/(k*(1 - x^k - x^(2*k)))). - Ilya Gutkovskiy, May 30 2018