A166861
Euler transform of Fibonacci numbers.
Original entry on oeis.org
1, 1, 2, 4, 8, 15, 30, 56, 108, 203, 384, 716, 1342, 2487, 4614, 8510, 15675, 28749, 52652, 96102, 175110, 318240, 577328, 1045068, 1888581, 3406455, 6134530, 11029036, 19799363, 35490823, 63531134, 113570988, 202767037, 361565865, 643970774, 1145636750
Offset: 0
G.f. = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 15*x^5 + 30*x^6 + 56*x^7 + 108*x^8 + 203*x^9 + ...
- Vaclav Kotesovec, Table of n, a(n) for n = 0..4550
- Loic Foissy, The Hopf algebra of Fliess operators and its dual pre-Lie algebra, 2013.
- W. S. Gray, K. Ebrahimi-Fard, Affine SISO Feedback Transformation Group and Its Faa di Bruno Hopf Algebra, arXiv:1411.0222 [math.OC], 2014.
- Vaclav Kotesovec, Asymptotics of the Euler transform of Fibonacci numbers, arXiv:1508.01796 [math.CO], Aug 07 2015
- Vaclav Kotesovec, Asymptotics of sequence A034691
-
F:= proc(n) option remember; (<<1|1>, <1|0>>^n)[1, 2] end:
a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
F(d), d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..40); # Alois P. Heinz, Jan 12 2017
-
CoefficientList[Series[Product[1/(1-x^k)^Fibonacci[k], {k, 1, 40}], {x, 0, 40}], x] (* Vaclav Kotesovec, Aug 05 2015 *)
-
ET(v)=Vec(prod(k=1,#v,1/(1-x^k+x*O(x^#v))^v[k]))
ET(vector(40,n,fibonacci(n)))
-
def EulerTransform(a):
@cached_function
def b(n):
if n == 0: return 1
s = sum(sum(d * a(d) for d in divisors(j)) * b(n-j) for j in (1..n))
return s//n
return b
a = BinaryRecurrenceSequence(1, 1)
b = EulerTransform(a)
print([b(n) for n in range(36)]) # Peter Luschny, Nov 11 2020
A261329
Euler transform of Pell numbers.
Original entry on oeis.org
1, 1, 3, 8, 23, 62, 175, 477, 1319, 3602, 9851, 26779, 72726, 196724, 531157, 1430144, 3842911, 10303055, 27570786, 73637306, 196333303, 522584286, 1388786089, 3685169795, 9764703347, 25838430572, 68282175170, 180221449469, 475102410065, 1251038486529
Offset: 0
-
nmax=40; Pell[0]=0; Pell[1]=1; Pell[n_]:=Pell[n] = 2*Pell[n-1] + Pell[n-2]; CoefficientList[Series[Product[1/(1-x^k)^Pell[k], {k, 1, nmax}], {x, 0, nmax}], x]
-
# uses[EulerTransform from A166861]
a = BinaryRecurrenceSequence(2, 1)
b = EulerTransform(a)
print([b(n) for n in range(30)]) # Peter Luschny, Nov 11 2020
A358369
Euler transform of 2^floor(n/2), (A016116).
Original entry on oeis.org
1, 1, 3, 5, 12, 20, 43, 73, 146, 250, 475, 813, 1499, 2555, 4592, 7800, 13761, 23253, 40421, 67963, 116723, 195291, 332026, 552882, 932023, 1544943, 2585243, 4267081, 7094593, 11662769, 19281018, 31575874, 51937608, 84753396, 138772038, 225693778, 368017636
Offset: 0
Sequences that can be represented as a EulerTransform(BinaryRecurrenceSequence()) include
A000009,
A000041,
A000712,
A001970,
A002513,
A010054,
A015128,
A022567,
A034691,
A111317,
A111335,
A117410,
A156224,
A166861,
A200544,
A261031,
A261329,
A358449.
-
BinaryRecurrenceSequence := proc(b, c, u0:=0, u1:=1) local u;
u := proc(n) option remember; if n < 2 then return [u0, u1][n + 1] fi;
b*u(n - 1) + c*u(n - 2) end; u end:
EulerTransform := proc(a) local b;
b := proc(n) option remember; if n = 0 then return 1 fi; add(add(d * a(d),
d = NumberTheory:-Divisors(j)) * b(n-j), j = 1..n) / n end; b end:
a := EulerTransform(BinaryRecurrenceSequence(0, 2, 1)): seq(a(n), n=0..36);
-
from typing import Callable
from functools import cache
from sympy import divisors
def BinaryRecurrenceSequence(b:int, c:int, u0:int=0, u1:int=1) -> Callable:
@cache
def u(n: int) -> int:
if n < 2:
return [u0, u1][n]
return b * u(n - 1) + c * u(n - 2)
return u
def EulerTransform(a: Callable) -> Callable:
@cache
def b(n: int) -> int:
if n == 0:
return 1
s = sum(sum(d * a(d) for d in divisors(j)) * b(n - j)
for j in range(1, n + 1))
return s // n
return b
b = BinaryRecurrenceSequence(0, 2, 1)
a = EulerTransform(b)
print([a(n) for n in range(37)])
-
# uses[EulerTransform from A166861]
b = BinaryRecurrenceSequence(0, 2, 1)
a = EulerTransform(b)
print([a(n) for n in range(37)])
A261051
Expansion of Product_{k>=1} (1+x^k)^(Lucas(k)).
Original entry on oeis.org
1, 1, 3, 7, 14, 33, 69, 148, 307, 642, 1314, 2684, 5432, 10924, 21841, 43431, 85913, 169170, 331675, 647601, 1259737, 2441706, 4716874, 9083215, 17439308, 33387589, 63749174, 121409236, 230658963, 437198116, 826838637, 1560410267, 2938808875, 5524005110
Offset: 0
-
L:= n-> (<<0|1>, <1|1>>^n. <<2, 1>>)[1, 1]:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(L(i), j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..50); # Alois P. Heinz, Aug 08 2015
-
nmax=40; CoefficientList[Series[Product[(1+x^k)^LucasL[k],{k,1,nmax}],{x,0,nmax}],x]
A261330
Euler transform of Pell-Lucas numbers.
Original entry on oeis.org
1, 2, 9, 30, 106, 348, 1153, 3698, 11798, 37034, 115294, 355202, 1086080, 3294912, 9931019, 29745296, 88597104, 262508288, 774073787, 2272321666, 6642701371, 19342768210, 56117550874, 162247236638, 467563212923, 1343273262184, 3847866714452, 10991864363660
Offset: 0
-
nmax=40; cPell[0]=2; cPell[1]=2; cPell[n_]:=cPell[n] = 2*cPell[n-1] + cPell[n-2]; CoefficientList[Series[Product[1/(1-x^k)^cPell[k], {k, 1, nmax}], {x, 0, nmax}], x]
A306484
Expansion of Product_{k>=1} 1/(1 - Lucas(k)*x^k), where Lucas = A000204.
Original entry on oeis.org
1, 1, 4, 8, 24, 47, 129, 255, 641, 1308, 3064, 6225, 14286, 28792, 63571, 129240, 278329, 561044, 1190501, 2387695, 4987250, 9976529, 20536591, 40879937, 83416195, 165182927, 333581057, 658385847, 1318764282, 2590568669, 5154370637, 10082762399, 19929958391, 38848175389, 76331335061, 148233818041
Offset: 0
-
nmax = 35; CoefficientList[Series[Product[1/(1 - LucasL[k] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 35; CoefficientList[Series[Exp[Sum[Sum[LucasL[j]^k x^(j k)/k, {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d LucasL[d]^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 35}]
Showing 1-6 of 6 results.
Comments