cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A166861 Euler transform of Fibonacci numbers.

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 30, 56, 108, 203, 384, 716, 1342, 2487, 4614, 8510, 15675, 28749, 52652, 96102, 175110, 318240, 577328, 1045068, 1888581, 3406455, 6134530, 11029036, 19799363, 35490823, 63531134, 113570988, 202767037, 361565865, 643970774, 1145636750
Offset: 0

Views

Author

Keywords

Comments

In general, the sequence with g.f. Product_{k>=1} 1/(1-x^k)^Fibonacci(k+z), where z is nonnegative integer, is asymptotic to phi^(n + z/4) / (2 * sqrt(Pi) * 5^(1/8) * n^(3/4)) * exp((phi/10 - 1/2) * Fibonacci(z) - Fibonacci(z+1)/10 + 2 * 5^(-1/4) * phi^(z/2) * sqrt(n) + s), where s = Sum_{k>=2} (Fibonacci(z) + Fibonacci(z+1) * phi^k) / ((phi^(2*k) - phi^k - 1)*k) and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 06 2015

Examples

			G.f. = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 15*x^5 + 30*x^6 + 56*x^7 + 108*x^8 + 203*x^9 + ...
		

Crossrefs

Programs

  • Maple
    F:= proc(n) option remember; (<<1|1>, <1|0>>^n)[1, 2] end:
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          F(d), d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Jan 12 2017
  • Mathematica
    CoefficientList[Series[Product[1/(1-x^k)^Fibonacci[k], {k, 1, 40}], {x, 0, 40}], x] (* Vaclav Kotesovec, Aug 05 2015 *)
  • PARI
    ET(v)=Vec(prod(k=1,#v,1/(1-x^k+x*O(x^#v))^v[k]))
    ET(vector(40,n,fibonacci(n)))
    
  • SageMath
    def EulerTransform(a):
        @cached_function
        def b(n):
            if n == 0: return 1
            s = sum(sum(d * a(d) for d in divisors(j)) * b(n-j) for j in (1..n))
            return s//n
        return b
    a = BinaryRecurrenceSequence(1, 1)
    b = EulerTransform(a)
    print([b(n) for n in range(36)]) # Peter Luschny, Nov 11 2020

Formula

G.f.: Product_{k>0} 1/(1 - x^k)^Fibonacci(k).
a(n) ~ phi^n / (2 * sqrt(Pi) * 5^(1/8) * n^(3/4)) * exp(-1/10 + 2*5^(-1/4)*sqrt(n) + s), where s = Sum_{k>=2} phi^k / ((phi^(2*k) - phi^k - 1)*k) = 0.600476601392575912969719494850393576083765123939643511355547131467... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Aug 06 2015
G.f.: exp(Sum_{k>=1} x^k/(k*(1 - x^k - x^(2*k)))). - Ilya Gutkovskiy, May 29 2018

Extensions

First formula corrected by Vaclav Kotesovec, Aug 05 2015

A261329 Euler transform of Pell numbers.

Original entry on oeis.org

1, 1, 3, 8, 23, 62, 175, 477, 1319, 3602, 9851, 26779, 72726, 196724, 531157, 1430144, 3842911, 10303055, 27570786, 73637306, 196333303, 522584286, 1388786089, 3685169795, 9764703347, 25838430572, 68282175170, 180221449469, 475102410065, 1251038486529
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 15 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=40; Pell[0]=0; Pell[1]=1; Pell[n_]:=Pell[n] = 2*Pell[n-1] + Pell[n-2]; CoefficientList[Series[Product[1/(1-x^k)^Pell[k], {k, 1, nmax}], {x, 0, nmax}], x]
  • SageMath
    # uses[EulerTransform from A166861]
    a = BinaryRecurrenceSequence(2, 1)
    b = EulerTransform(a)
    print([b(n) for n in range(30)]) # Peter Luschny, Nov 11 2020

Formula

G.f.: Product_{k>=1} 1/(1-x^k)^(A000129(k)).
a(n) ~ (1+sqrt(2))^n * exp(-1/8 + 2^(1/4)*sqrt(n) + s) / (2^(11/8) * sqrt(Pi) * n^(3/4)), where s = Sum_{k>=2} 1/(((sqrt(2)+1)^k - (sqrt(2)-1)^k - 2)*k) = 0.17615706029370539578355193664752741450665073523628663099586621933373...
G.f.: exp(Sum_{k>=1} x^k/(k*(1 - 2*x^k - x^(2*k)))). - Ilya Gutkovskiy, May 30 2018

A358369 Euler transform of 2^floor(n/2), (A016116).

Original entry on oeis.org

1, 1, 3, 5, 12, 20, 43, 73, 146, 250, 475, 813, 1499, 2555, 4592, 7800, 13761, 23253, 40421, 67963, 116723, 195291, 332026, 552882, 932023, 1544943, 2585243, 4267081, 7094593, 11662769, 19281018, 31575874, 51937608, 84753396, 138772038, 225693778, 368017636
Offset: 0

Views

Author

Peter Luschny, Nov 17 2022

Keywords

Crossrefs

Sequences that can be represented as a EulerTransform(BinaryRecurrenceSequence()) include A000009, A000041, A000712, A001970, A002513, A010054, A015128, A022567, A034691, A111317, A111335, A117410, A156224, A166861, A200544, A261031, A261329, A358449.

Programs

  • Maple
    BinaryRecurrenceSequence := proc(b, c, u0:=0, u1:=1) local u;
    u := proc(n) option remember; if n < 2 then return [u0, u1][n + 1] fi;
    b*u(n - 1) + c*u(n - 2) end; u end:
    EulerTransform := proc(a) local b;
    b := proc(n) option remember; if n = 0 then return 1 fi; add(add(d * a(d),
    d = NumberTheory:-Divisors(j)) * b(n-j), j = 1..n) / n end; b end:
    a := EulerTransform(BinaryRecurrenceSequence(0, 2, 1)): seq(a(n), n=0..36);
  • Python
    from typing import Callable
    from functools import cache
    from sympy import divisors
    def BinaryRecurrenceSequence(b:int, c:int, u0:int=0, u1:int=1) -> Callable:
        @cache
        def u(n: int) -> int:
            if n < 2:
                return [u0, u1][n]
            return b * u(n - 1) + c * u(n - 2)
        return u
    def EulerTransform(a: Callable) -> Callable:
        @cache
        def b(n: int) -> int:
            if n == 0:
                return 1
            s = sum(sum(d * a(d) for d in divisors(j)) * b(n - j)
                for j in range(1, n + 1))
            return s // n
        return b
    b = BinaryRecurrenceSequence(0, 2, 1)
    a = EulerTransform(b)
    print([a(n) for n in range(37)])
  • Sage
    # uses[EulerTransform from A166861]
    b = BinaryRecurrenceSequence(0, 2, 1)
    a = EulerTransform(b)
    print([a(n) for n in range(37)])
    

A261051 Expansion of Product_{k>=1} (1+x^k)^(Lucas(k)).

Original entry on oeis.org

1, 1, 3, 7, 14, 33, 69, 148, 307, 642, 1314, 2684, 5432, 10924, 21841, 43431, 85913, 169170, 331675, 647601, 1259737, 2441706, 4716874, 9083215, 17439308, 33387589, 63749174, 121409236, 230658963, 437198116, 826838637, 1560410267, 2938808875, 5524005110
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 08 2015

Keywords

Crossrefs

Programs

  • Maple
    L:= n-> (<<0|1>, <1|1>>^n. <<2, 1>>)[1, 1]:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           add(binomial(L(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Aug 08 2015
  • Mathematica
    nmax=40; CoefficientList[Series[Product[(1+x^k)^LucasL[k],{k,1,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ phi^n / (2*sqrt(Pi)*n^(3/4)) * exp(-1 + 1/(2*sqrt(5)) + 2*sqrt(n) + s), where s = Sum_{k>=2} (-1)^(k+1) * (2 + phi^k)/((phi^(2*k) - phi^k - 1)*k) = -0.590290697526802161885355317939144642488927381134222996704542... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio.
G.f.: exp(Sum_{k>=1} (-1)^(k+1)*x^k*(1 + 2*x^k)/(k*(1 - x^k - x^(2*k)))). - Ilya Gutkovskiy, May 30 2018

A261330 Euler transform of Pell-Lucas numbers.

Original entry on oeis.org

1, 2, 9, 30, 106, 348, 1153, 3698, 11798, 37034, 115294, 355202, 1086080, 3294912, 9931019, 29745296, 88597104, 262508288, 774073787, 2272321666, 6642701371, 19342768210, 56117550874, 162247236638, 467563212923, 1343273262184, 3847866714452, 10991864363660
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 15 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=40; cPell[0]=2; cPell[1]=2; cPell[n_]:=cPell[n] = 2*cPell[n-1] + cPell[n-2]; CoefficientList[Series[Product[1/(1-x^k)^cPell[k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1-x^k)^(A002203(k)).
a(n) ~ (1+sqrt(2))^n * exp(-1 + 2^(-3/2) + 2*sqrt(n) + s) / (2 * sqrt(Pi) * n^(3/4)), where s = Sum_{k>=2} = 2/(((1+sqrt(2))^k + 2/(1 + (1+sqrt(2))^k) - 3)*k) = 0.40371233206538058741995064489690066306587648488344483...

A306484 Expansion of Product_{k>=1} 1/(1 - Lucas(k)*x^k), where Lucas = A000204.

Original entry on oeis.org

1, 1, 4, 8, 24, 47, 129, 255, 641, 1308, 3064, 6225, 14286, 28792, 63571, 129240, 278329, 561044, 1190501, 2387695, 4987250, 9976529, 20536591, 40879937, 83416195, 165182927, 333581057, 658385847, 1318764282, 2590568669, 5154370637, 10082762399, 19929958391, 38848175389, 76331335061, 148233818041
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 18 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 35; CoefficientList[Series[Product[1/(1 - LucasL[k] x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 35; CoefficientList[Series[Exp[Sum[Sum[LucasL[j]^k x^(j k)/k, {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d LucasL[d]^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 35}]

Formula

G.f.: exp(Sum_{k>=1} Sum_{j>=1} Lucas(j)^k*x^(j*k)/k).
From Vaclav Kotesovec, Feb 23 2019: (Start)
a(n) ~ c * 3^(n/2), where
c = 27050904.849254721356174679220734831574107371522481898944915... if n is even,
c = 27050894.152054775323471273913497954429537332266942696921416... if n is odd.
In closed form, c = ((3 + sqrt(3)) * Product_{k>=3}(1/(1 - Lucas(k)/3^(k/2))) + (-1)^n * (3 - sqrt(3)) * Product_{k>=3}(1/(1 - (-1)^k*Lucas(k)/3^(k/2))))/4.
(End)
Showing 1-6 of 6 results.