cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261059 Number of solutions to c(1)*prime(2)+...+c(2n)*prime(2n+1) = -2, where c(i) = +-1 for i > 1, c(1) = 1.

Original entry on oeis.org

1, 0, 2, 1, 4, 25, 47, 237, 562, 1965, 7960, 24148, 85579, 307569, 1104519, 4106381, 14710760, 52113647, 193181449, 698356631, 2574590311, 9600573372, 35644252223, 131545038705, 492346772797, 1843993274342, 6903884199622, 25984680496124, 97937400336407
Offset: 1

Views

Author

M. F. Hasler, Aug 08 2015

Keywords

Comments

There cannot be a solution for an odd number of terms on the l.h.s. because all terms are odd but the r.h.s. is even.

Examples

			a(1) = 1 because prime(2) - prime(3) = -2.
a(2) = 0 because prime(2) +- prime(3) +- prime(4) +- prime(5) is different from -2 for any choice of the signs.
a(3) = 2 counts the 2 solutions prime(2) - prime(3) + prime(4) - prime(5) - prime(6) + prime(7) = -2 and prime(2) - prime(3) - prime(4) + prime(5) + prime(6) - prime(7) = -2.
		

Crossrefs

Cf. A261057 (starting with prime(1)), A261060 (starting with prime(3)), A261045 (starting with prime(4)), A261061 - A261063 and A261044 (r.h.s. = -1), A022894 - A022904, A083309, A022920 (r.h.s. = 0, 1 or 2), .

Programs

  • Maple
    s:= proc(n) option remember;
          `if`(n<3, 0, ithprime(n)+s(n-1))
        end:
    b:= proc(n, i) option remember; `if`(n>s(i), 0, `if`(i=2, 1,
          b(abs(n-ithprime(i)),i-1)+b(n+ithprime(i),i-1)))
        end:
    a:= n-> b(5, 2*n+1):
    seq(a(n), n=1..30);  # Alois P. Heinz, Aug 08 2015
  • Mathematica
    s[n_] := s[n] = If[n<3, 0, Prime[n]+s[n-1]]; b[n_, i_] := b[n, i] = If[n > s[i], 0, If[i == 2, 1, b[Abs[n-Prime[i]], i-1] + b[n+Prime[i], i-1]]];  a[n_] := b[5, 2*n+1]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
  • PARI
    A261059(n,rhs=-2,firstprime=2)={rhs-=prime(firstprime);my(p=vector(2*n-2+bittest(rhs,0),i,prime(i+firstprime)));sum(i=1,2^#p-1,sum(j=1,#p,(-1)^bittest(i,j-1)*p[j])==rhs)} \\ For illustrative purpose; too slow for n >> 10.
    
  • PARI
    a(n,s=-2-3,p=2)=if(n<=s,if(s==p,n==s,a(abs(n-p),s-p,precprime(p-1))+a(n+p,s-p,precprime(p-1))),if(s<=0,a(abs(s),sum(i=p+1,p+2*n-1,prime(i)),prime(p+n*2-1))))

Formula

a(n) = [x^5] Product_{k=3..2*n+1} (x^prime(k) + 1/x^prime(k)). - Ilya Gutkovskiy, Jan 31 2024

Extensions

a(15)-a(29) from Alois P. Heinz, Aug 08 2015