A261059 Number of solutions to c(1)*prime(2)+...+c(2n)*prime(2n+1) = -2, where c(i) = +-1 for i > 1, c(1) = 1.
1, 0, 2, 1, 4, 25, 47, 237, 562, 1965, 7960, 24148, 85579, 307569, 1104519, 4106381, 14710760, 52113647, 193181449, 698356631, 2574590311, 9600573372, 35644252223, 131545038705, 492346772797, 1843993274342, 6903884199622, 25984680496124, 97937400336407
Offset: 1
Keywords
Examples
a(1) = 1 because prime(2) - prime(3) = -2. a(2) = 0 because prime(2) +- prime(3) +- prime(4) +- prime(5) is different from -2 for any choice of the signs. a(3) = 2 counts the 2 solutions prime(2) - prime(3) + prime(4) - prime(5) - prime(6) + prime(7) = -2 and prime(2) - prime(3) - prime(4) + prime(5) + prime(6) - prime(7) = -2.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..300
Crossrefs
Programs
-
Maple
s:= proc(n) option remember; `if`(n<3, 0, ithprime(n)+s(n-1)) end: b:= proc(n, i) option remember; `if`(n>s(i), 0, `if`(i=2, 1, b(abs(n-ithprime(i)),i-1)+b(n+ithprime(i),i-1))) end: a:= n-> b(5, 2*n+1): seq(a(n), n=1..30); # Alois P. Heinz, Aug 08 2015
-
Mathematica
s[n_] := s[n] = If[n<3, 0, Prime[n]+s[n-1]]; b[n_, i_] := b[n, i] = If[n > s[i], 0, If[i == 2, 1, b[Abs[n-Prime[i]], i-1] + b[n+Prime[i], i-1]]]; a[n_] := b[5, 2*n+1]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
-
PARI
A261059(n,rhs=-2,firstprime=2)={rhs-=prime(firstprime);my(p=vector(2*n-2+bittest(rhs,0),i,prime(i+firstprime)));sum(i=1,2^#p-1,sum(j=1,#p,(-1)^bittest(i,j-1)*p[j])==rhs)} \\ For illustrative purpose; too slow for n >> 10.
-
PARI
a(n,s=-2-3,p=2)=if(n<=s,if(s==p,n==s,a(abs(n-p),s-p,precprime(p-1))+a(n+p,s-p,precprime(p-1))),if(s<=0,a(abs(s),sum(i=p+1,p+2*n-1,prime(i)),prime(p+n*2-1))))
Formula
a(n) = [x^5] Product_{k=3..2*n+1} (x^prime(k) + 1/x^prime(k)). - Ilya Gutkovskiy, Jan 31 2024
Extensions
a(15)-a(29) from Alois P. Heinz, Aug 08 2015
Comments