A022894
Number of solutions to c(1)*prime(1) +...+ c(2n+1)*prime(2n+1) = 0, where c(i) = +-1 for i > 1, c(1) = 1.
Original entry on oeis.org
0, 1, 1, 2, 5, 13, 39, 122, 392, 1286, 4341, 14860, 51085, 178402, 634511, 2260918, 8067237, 29031202, 105250449, 383579285, 1404666447, 5171065198, 19141008044, 71124987313, 263548339462, 983424096451, 3684422350470, 13818161525284, 51938115653565
Offset: 0
a(1) = 1 because 2 + 3 - 5 = 0,
a(2) = 1 because 2 - 3 + 5 + 7 - 11 = 0,
a(3) = 2 because
2 + 3 - 5 - 7 + 11 + 13 - 17 =
2 + 3 - 5 + 7 - 11 - 13 + 17 = 0.
a(4) = 5 because
2 - 3 - 5 + 7 + 11 + 13 + 17 - 19 - 23 =
2 - 3 + 5 - 7 + 11 + 13 - 17 + 19 - 23 =
2 - 3 + 5 + 7 - 11 - 13 + 17 + 19 - 23 =
2 - 3 + 5 + 7 - 11 + 13 - 17 - 19 + 23 =
2 + 3 + 5 - 7 - 11 - 13 + 17 - 19 + 23 = 0
and there are no others up through the ninth prime.
-
sp:= proc(n) sp(n):= `if`(n=1, 0, ithprime(n)+sp(n-1)) end:
b := proc(n,i) option remember; `if`(n>sp(i), 0, `if`(i=1, 1,
b(n+ithprime(i), i-1)+ b(abs(n-ithprime(i)), i-1)))
end:
a:= n-> b(2, 2*n+1):
seq(a(n), n=0..40); # Alois P. Heinz, Aug 05 2012
-
Do[a = Table[ Prime[i], {i, 1, n} ]; c = 0; k = 2^(n - 1); While[k < 2^n, If[ Apply[ Plus, a*(-1)^(IntegerDigits[k, 2] + 1)] == 0, c++ ]; k++ ]; Print[c], {n, 1, 32, 2} ]
-
A022894={a(n, s=0-prime(1), p=1)=if(n<=s, if(s==p, n==s, a(abs(n-p), s-p, precprime(p-1))+a(n+p, s-p, precprime(p-1))), if(s<=0, a(abs(s), max(sum(i=p+1, p+(p>1)+2*n, prime(i)),1), prime(p+(p>1)+2*n))))} \\ M. F. Hasler, Aug 09 2015
A083309
a(n) is the number of times that sums 3 +- 5 +- 7 +- 11 +- ... +- prime(2n+1) of the first 2n odd primes is zero. There are 2^(2n-1) choices for the sign patterns.
Original entry on oeis.org
0, 0, 1, 2, 7, 19, 63, 197, 645, 2172, 7423, 25534, 89218, 317284, 1130526, 4033648, 14515742, 52625952, 191790090, 702333340, 2585539586, 9570549372, 35562602950, 131774529663, 491713178890, 1842214901398, 6909091641548
Offset: 1
a(3) = 1 because there is only one sign pattern of the first six odd primes that yields zero: 3 + 5 + 7 - 11 + 13 - 17.
Cf.
A022894 (use all primes in the sum),
A022895 (r.h.s. = 1),
A022896 (r.h.s. = 2),
A022897 (interleaved 0 for odd number of terms), ...,
A022903 (using primes >= 7),
A022904,
A022920;
A261061 -
A261063 and
A261044 (r.h.s. = -1);
A261057,
A261059,
A261060,
A261045 (r.h.s. = -2).
-
d={1, 0, 0, 1}; nMax=32; zeroLst={}; Do[p=Prime[n+1]; d=PadLeft[d, Length[d]+p]+PadRight[d, Length[d]+p]; If[0==Mod[n, 2], AppendTo[zeroLst, d[[(Length[d]+1)/2]]]], {n, 2, nMax}]; zeroLst/2
-
A083309(n, rhs=0, firstprime=2)={rhs-=prime(firstprime); my(p=vector(2*n-2+bittest(rhs, 0), i, prime(i+firstprime))); sum(i=1, 2^#p-1, sum(j=1, #p, (-1)^bittest(i, j-1)*p[j])==rhs)} \\ For illustrative purpose, too slow for n >> 10. - M. F. Hasler, Aug 08 2015
A022920
Number of solutions to c(1)*prime(4) + ... + c(n)*prime(n+3) = 2, where c(i) = +-1 for i > 1, c(1) = 1.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 1, 0, 7, 0, 12, 0, 61, 0, 131, 0, 472, 0, 2039, 0, 5924, 0, 21095, 0, 76058, 0, 274023, 0, 1032989, 0, 3694643, 0, 12987172, 0, 48417270, 0, 174274092, 0, 642785629, 0, 2402825962, 0, 8918414212, 0, 32868915523, 0, 123145191037, 0
Offset: 1
Cf.
A022894,
A022895,
A022896 (r.h.s. = 0, 1 & 2, using all primes),
A083309 and
A022897 -
A022899 (using primes >= 3),
A022900 -
A022902 (using primes >=5),
A022903,
A022904 (r.h.s. = 0 & 1, using primes >= 7);
A261061 -
A261063 &
A261045 (r.h.s. = -1);
A261057,
A261059,
A261060 &
A261044 (r.h.s. = -2).
-
b[n_, s_, p_] := b[n, s, p] = If[n <= s, If[s == p, Boole[n == s], b[Abs[n - p], s - p, NextPrime[p - 1, -1]] + b[n + p, s - p, NextPrime[p - 1, -1] ]], If[s <= 0, b[Abs[s], Sum[Prime[i], {i, p + 1, p + n - 1}], Prime[p + n - 1]]]] /. Null -> 0; a[n_] := b[n, 2 - Prime[4], 4]; Array[a, 50] (* Jean-François Alcover, Feb 14 2018, after M. F. Hasler *)
-
A022920(n)={my(p=vector(n-1,i,prime(i+4)));sum(i=1,2^(n-1),sum(j=1,#p,(1-bittest(i,j-1)<<1)*p[j],7)==2)} \\ For illustrative purpose; too slow for n >> 20. - M. F. Hasler, Aug 08 2015
-
a(n, s=2-prime(4), p=4)=if(n<=s, if(s==p, n==s, a(abs(n-p), s-p, precprime(p-1))+a(n+p, s-p, precprime(p-1))), if(s<=0, a(abs(s), sum(i=p+1, p+n-1, prime(i)), prime(p+n-1)))) \\ M. F. Hasler, Aug 09 2015
A261061
Number of solutions to c(1)*prime(1)+...+c(2n)*prime(2n) = -1, where c(i) = +-1 for i > 1, c(1) = 1.
Original entry on oeis.org
1, 0, 2, 3, 8, 23, 68, 221, 709, 2344, 8006, 27585, 95114, 335645, 1202053, 4267640, 15317698, 55248527, 200711160, 733697248, 2696576651, 9941588060, 36928160817, 136800727634, 508780005068, 1901946851732, 7133247301621, 26782446410398, 100862459737318
Offset: 1
a(1) = 1 counts the solution prime(1) - prime(2) = -1.
a(2) = 0 because prime(1) +- prime(2) +- prime(3) +- prime(4) is always different from -1.
a(3) = 2 counts the two solutions prime(1) - prime(2) + prime(3) - prime(4) - prime(5) + prime(6) = -1 and prime(1) - prime(2) - prime(3) + prime(4) + prime(5) - prime(6) = -1.
-
s:= proc(n) option remember;
`if`(n<2, 0, ithprime(n)+s(n-1))
end:
b:= proc(n, i) option remember; `if`(n>s(i), 0, `if`(i=1, 1,
b(abs(n-ithprime(i)), i-1)+b(n+ithprime(i), i-1)))
end:
a:= n-> b(3, 2*n):
seq(a(n), n=1..30); # Alois P. Heinz, Aug 08 2015
-
s[n_] := s[n] = If[n<2, 0, Prime[n]+s[n-1]]; b[n_, i_] := b[n, i] = If[n > s[i], 0, If[i == 1, 1, b[Abs[n-Prime[i]], i-1] + b[n+Prime[i], i-1]]]; a[n_] := b[3, 2*n]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
-
A261061(n,rhs=-1,firstprime=1)={rhs-=prime(firstprime);my(p=vector(2*n-2+bittest(rhs,0),i,prime(i+firstprime)));sum(i=1,2^#p-1,sum(j=1,#p,(-1)^bittest(i,j-1)*p[j])==rhs)} \\ For illustrative purpose; too slow for n >> 10.
A261045
Number of solutions to c(1)*prime(4) + c(2)*prime(5) + ... + c(2n-1)*prime(2n+2) = -1, where c(i) = +-1 for i>1, c(1) = 1.
Original entry on oeis.org
0, 0, 0, 1, 2, 5, 32, 93, 261, 1082, 3253, 12307, 40809, 153392, 525417, 1892876, 6847161, 25256461, 91268129, 335852960, 1239350769, 4606651034, 17073491494, 63523866957, 237953442636, 892247156886, 3346127378391, 12603121634857, 47642071407103
Offset: 1
-
s:= proc(n) option remember;
`if`(n<5, 0, ithprime(n)+s(n-1))
end:
b:= proc(n, i) option remember; `if`(n>s(i), 0, `if`(i=4, 1,
b(abs(n-ithprime(i)),i-1)+b(n+ithprime(i),i-1)))
end:
a:= n-> b(8, 2*n+2):
seq(a(n), n=1..30); # Alois P. Heinz, Aug 08 2015
-
s[n_] := s[n] = If[n<5, 0, Prime[n]+s[n-1]]; b[n_, i_] := b[n, i] = If[n > s[i], 0, If[i == 4, 1, b[Abs[n-Prime[i]], i-1] + b[n+Prime[i], i-1]]]; a[n_] := b[8, 2*n+2]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
-
a(n)={my(p=vector(2*n-2,i,prime(i+4)));sum(i=1,2^(2*n-2),sum(j=1,#p,(1-bittest(i,j-1)<<1)*p[j],7)==-1)} \\ For illustrative purpose; too slow for n >> 10. - M. F. Hasler, Aug 08 2015
A261057
Number of solutions to c(1)*prime(1)+...+c(2n-1)*prime(2n-1) = -2, where c(i) = +-1 for i > 1, c(1) = 1.
Original entry on oeis.org
0, 0, 1, 1, 5, 13, 40, 123, 388, 1284, 4332, 14868, 51094, 178361, 634422, 2260717, 8066841, 29030051, 105247340, 383574146, 1404657053, 5171018981, 19140750300, 71124341227, 263546155710, 983417309702, 3684399940711, 13818092760075, 51937827473594, 195956606402526
Offset: 1
a(1) = a(2) = 0 because prime(1) and prime(1) +- prime(2) +- prime(3) is always different from -2.
a(3) = 1 because prime(1) - prime(2) - prime(3) - prime(4) + prime(5) = -2.
-
s:= proc(n) option remember;
`if`(n<2, 0, ithprime(n)+s(n-1))
end:
b:= proc(n, i) option remember; `if`(n>s(i), 0, `if`(i=1, 1,
b(abs(n-ithprime(i)),i-1)+b(n+ithprime(i),i-1)))
end:
a:= n-> b(4, 2*n-1):
seq(a(n), n=1..30); # Alois P. Heinz, Aug 08 2015
-
s[n_] := s[n] = If[n<2, 0, Prime[n]+s[n-1]]; b[n_, i_] := b[n, i] = If[n > s[i], 0, If[i == 1, 1, b[Abs[n-Prime[i]], i-1] + b[n+Prime[i], i-1]]]; a[n_] := b[4, 2*n-1]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
-
A261057(n,rhs=-2,firstprime=1)={rhs-=prime(firstprime);my(p=vector(2*n-2+bittest(rhs,0),i,prime(i+firstprime)));sum(i=1,2^#p-1,sum(j=1,#p,(-1)^bittest(i,j-1)*p[j])==rhs)} \\ For illustrative purpose; too slow for n >> 10.
-
a(n, s=-2-prime(1), p=1)={if(n<=s, if(s==p, n==s, a(abs(n-p), s-p, precprime(p-1))+a(n+p, s-p, precprime(p-1))), if(s<=0, a(abs(s), max(sum(i=p+1, p+=2*n-2+bittest(s,0), prime(i)),1), prime(p))))} \\ M. F. Hasler, Aug 09 2015
A261063
Number of solutions to c(1)*prime(3) + ... + c(2n-1)*prime(2n+1) = -1, where c(i) = +-1 for i > 1, c(1) = 1.
Original entry on oeis.org
0, 0, 0, 1, 6, 8, 40, 67, 373, 1232, 3330, 13656, 47111, 164957, 582042, 1967152, 7129046, 26655235, 94956602, 353789267, 1300061367, 4765080122, 17726643505, 66038899483, 245431428625, 919911458949, 3457983108462, 12974054097333, 49016641868213, 185510228030858
Offset: 1
a(1) = a(2) = 0 because prime(3) and prime(3) +- prime(4) +- prime(5) are different from -1 for any choice of the signs.
a(3) = 0 because the same sums prime(3) +- ... +- prime(7) is also always different from -1 for any choice of the signs.
a(4) = 1 because prime(3) - prime(4) - prime(5) - prime(6) - prime(7) + prime(8) + prime(9) = -1 is the only solution.
-
s:= proc(n) option remember;
`if`(n<4, 0, ithprime(n)+s(n-1))
end:
b:= proc(n, i) option remember; `if`(n>s(i), 0, `if`(i=3, 1,
b(abs(n-ithprime(i)),i-1)+b(n+ithprime(i),i-1)))
end:
a:= n-> b(6, 2*n+1):
seq(a(n), n=1..30); # Alois P. Heinz, Aug 08 2015
-
s[n_] := s[n] = If[n<4, 0, Prime[n]+s[n-1]]; b[n_, i_] := b[n, i] = If[n > s[i], 0, If[i == 3, 1, b[Abs[n-Prime[i]], i-1] + b[n+Prime[i], i-1]]]; a[n_] := b[6, 2*n+1]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
-
A261063(n,rhs=-1,firstprime=3)={rhs-=prime(firstprime);my(p=vector(2*n-2+bittest(rhs,0),i,prime(i+firstprime)));sum(i=1,2^#p-1,sum(j=1,#p,(-1)^bittest(i,j-1)*p[j])==rhs)} \\ For illustrative purpose; too slow for n >> 10.
A261060
Number of solutions to c(1)*prime(3) + ... + c(2n)*prime(2n+2) = -2, where c(i) = +-1 for i > 1, c(1) = 1.
Original entry on oeis.org
1, 0, 2, 1, 9, 22, 38, 143, 676, 1815, 7434, 22452, 87485, 290873, 1092072, 3894381, 13988849, 49672279, 184745525, 677809709, 2495632892, 9260315018, 34280441347, 127419049587, 474867366809, 1781565475308, 6700749901259, 25230023849115, 95215110677472
Offset: 1
a(1) = 1 because prime(3) - prime(4) = -2.
a(2) = 0 because prime(3) +- prime(4) +- prime(5) +- prime(6) is different from -2 for any choice of the signs.
a(3) = 2 counts the two solutions prime(3) - prime(4) + prime(5) - prime(6) - prime(7) + prime(8) = 5 - 7 + 11 - 13 - 17 + 19 = -2 and prime(3) - prime(4) - prime(5) + prime(6) + prime(7) - prime(8) = 5 - 7 - 11 + 13 + 17 - 19 = -2.
-
s:= proc(n) option remember;
`if`(n<4, 0, ithprime(n)+s(n-1))
end:
b:= proc(n, i) option remember; `if`(n>s(i), 0, `if`(i=3, 1,
b(abs(n-ithprime(i)),i-1)+b(n+ithprime(i),i-1)))
end:
a:= n-> b(7, 2*n+2):
seq(a(n), n=1..30); # Alois P. Heinz, Aug 08 2015
-
s[n_] := s[n] = If[n<4, 0, Prime[n]+s[n-1]]; b[n_, i_] := b[n, i] = If[n > s[i], 0, If[i == 3, 1, b[Abs[n-Prime[i]], i-1]+b[n+Prime[i], i-1]]]; a[n_] := b[7, 2*n+2]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
-
a(n,rhs=-2,firstprime=3)={rhs-=prime(firstprime);my(p=vector(2*n-2+bittest(rhs,0),i,prime(i+firstprime)));sum(i=1,2^#p-1,sum(j=1,#p,(-1)^bittest(i,j-1)*p[j])==rhs)} \\ For illustrative purpose; too slow for n >> 10.
A261044
Number of solutions to c(1)*prime(4)+...+c(n)*prime(n+3) = -2, where c(i) = +-1 for i > 1, c(1) = 1.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 2, 0, 5, 0, 18, 0, 48, 0, 170, 0, 540, 0, 1868, 0, 6385, 0, 22247, 0, 79355, 0, 282754, 0, 1008714, 0, 3627599, 0, 13156851, 0, 47949883, 0, 175599692, 0, 646384942, 0, 2392644640, 0, 8890619925, 0, 32943781423, 0, 122928406923, 0
Offset: 1
a(8) = 2 counts the two solutions prime(4) - prime(5) + prime(6) - prime(7) - prime(8) + prime(9) - prime(10) + prime(11) = -2 and prime(4) - prime(5) - prime(6) + prime(7) + prime(8) - prime(9) - prime(10) + prime(11) = -2.
-
A261044(n, rhs=-2, firstprime=4)={rhs-=prime(firstprime); my(p=vector(n-1, i, prime(i+firstprime))); sum(i=1, 2^#p-1, sum(j=1, #p, (-1)^bittest(i, j-1)*p[j])==rhs)} \\ For illustrative purpose; too slow for n >> 10.
A022895
Number of solutions to c(1)*prime(1) + ... + c(n)*prime(n) = 1, where c(i) = +-1 for i > 1, c(1) = 1.
Original entry on oeis.org
0, 0, 0, 1, 0, 1, 0, 3, 0, 8, 0, 22, 0, 70, 0, 218, 0, 708, 0, 2354, 0, 8015, 0, 27561, 0, 95160, 0, 335579, 0, 1202236, 0, 4267477, 0, 15318171, 0, 55248419, 0, 200711050, 0, 733704990, 0, 2696599982, 0, 9941660942, 0, 36928370497, 0, 136801720627, 0
Offset: 1
a(8) counts these 3 solutions: {2, -3, -5, 7, -11, 13, 17, -19}, {2, -3, -5, 7, 11, -13, -17, 19}, {2, -3, 5, -7, -11, 13, -17, 19}.
-
{f, s} = {1, 1}; Table[t = Map[Prime[# + f - 1] &, Range[2, z]]; Count[Map[Apply[Plus, #] &, Map[t # &, Tuples[{-1, 1}, Length[t]]]], s - Prime[f]], {z, 22}]
(* A022895, a(n) = number of solutions of "sum = s" using Prime(f) to Prime(f+n-1) *)
n = 8; t = Map[Prime[# + f - 1] &, Range[n]]; Map[#[[2]] &, Select[Map[{Apply[Plus, #], #} &, Map[t # &, Map[Prepend[#, 1] &, Tuples[{-1, 1}, Length[t] - 1]]]], #[[1]] == s &]] (* the 3 solutions using n=8 primes; Peter J. C. Moses, Oct 01 2013 *)
-
A022895(n, rhs=1, firstprime=1)={rhs-=prime(firstprime); my(p=vector(n-1, i, prime(i+firstprime))); sum(i=1, 2^#p-1, sum(j=1, #p, (-1)^bittest(i, j-1)*p[j])==rhs)} \\ For illustrative purpose, too slow for n >> 20. - M. F. Hasler, Aug 08 2015
-
a(n, s=1-prime(1), p=1)={if(n<=s, if(s==p, n==s, a(abs(n-p), s-p, precprime(p-1))+a(n+p, s-p, precprime(p-1))), if(s<=0, if(n>1,a(abs(s), sum(i=p+1, p+n-1, prime(i)), prime(p+n-1)),!s)))} \\ On function call, s = r.h.s.- smallest prime; during recursion: sum of all primes to be used. - M. F. Hasler, Aug 09 2015
Showing 1-10 of 17 results.
Comments