A022894
Number of solutions to c(1)*prime(1) +...+ c(2n+1)*prime(2n+1) = 0, where c(i) = +-1 for i > 1, c(1) = 1.
Original entry on oeis.org
0, 1, 1, 2, 5, 13, 39, 122, 392, 1286, 4341, 14860, 51085, 178402, 634511, 2260918, 8067237, 29031202, 105250449, 383579285, 1404666447, 5171065198, 19141008044, 71124987313, 263548339462, 983424096451, 3684422350470, 13818161525284, 51938115653565
Offset: 0
a(1) = 1 because 2 + 3 - 5 = 0,
a(2) = 1 because 2 - 3 + 5 + 7 - 11 = 0,
a(3) = 2 because
2 + 3 - 5 - 7 + 11 + 13 - 17 =
2 + 3 - 5 + 7 - 11 - 13 + 17 = 0.
a(4) = 5 because
2 - 3 - 5 + 7 + 11 + 13 + 17 - 19 - 23 =
2 - 3 + 5 - 7 + 11 + 13 - 17 + 19 - 23 =
2 - 3 + 5 + 7 - 11 - 13 + 17 + 19 - 23 =
2 - 3 + 5 + 7 - 11 + 13 - 17 - 19 + 23 =
2 + 3 + 5 - 7 - 11 - 13 + 17 - 19 + 23 = 0
and there are no others up through the ninth prime.
-
sp:= proc(n) sp(n):= `if`(n=1, 0, ithprime(n)+sp(n-1)) end:
b := proc(n,i) option remember; `if`(n>sp(i), 0, `if`(i=1, 1,
b(n+ithprime(i), i-1)+ b(abs(n-ithprime(i)), i-1)))
end:
a:= n-> b(2, 2*n+1):
seq(a(n), n=0..40); # Alois P. Heinz, Aug 05 2012
-
Do[a = Table[ Prime[i], {i, 1, n} ]; c = 0; k = 2^(n - 1); While[k < 2^n, If[ Apply[ Plus, a*(-1)^(IntegerDigits[k, 2] + 1)] == 0, c++ ]; k++ ]; Print[c], {n, 1, 32, 2} ]
-
A022894={a(n, s=0-prime(1), p=1)=if(n<=s, if(s==p, n==s, a(abs(n-p), s-p, precprime(p-1))+a(n+p, s-p, precprime(p-1))), if(s<=0, a(abs(s), max(sum(i=p+1, p+(p>1)+2*n, prime(i)),1), prime(p+(p>1)+2*n))))} \\ M. F. Hasler, Aug 09 2015
A083309
a(n) is the number of times that sums 3 +- 5 +- 7 +- 11 +- ... +- prime(2n+1) of the first 2n odd primes is zero. There are 2^(2n-1) choices for the sign patterns.
Original entry on oeis.org
0, 0, 1, 2, 7, 19, 63, 197, 645, 2172, 7423, 25534, 89218, 317284, 1130526, 4033648, 14515742, 52625952, 191790090, 702333340, 2585539586, 9570549372, 35562602950, 131774529663, 491713178890, 1842214901398, 6909091641548
Offset: 1
a(3) = 1 because there is only one sign pattern of the first six odd primes that yields zero: 3 + 5 + 7 - 11 + 13 - 17.
Cf.
A022894 (use all primes in the sum),
A022895 (r.h.s. = 1),
A022896 (r.h.s. = 2),
A022897 (interleaved 0 for odd number of terms), ...,
A022903 (using primes >= 7),
A022904,
A022920;
A261061 -
A261063 and
A261044 (r.h.s. = -1);
A261057,
A261059,
A261060,
A261045 (r.h.s. = -2).
-
d={1, 0, 0, 1}; nMax=32; zeroLst={}; Do[p=Prime[n+1]; d=PadLeft[d, Length[d]+p]+PadRight[d, Length[d]+p]; If[0==Mod[n, 2], AppendTo[zeroLst, d[[(Length[d]+1)/2]]]], {n, 2, nMax}]; zeroLst/2
-
A083309(n, rhs=0, firstprime=2)={rhs-=prime(firstprime); my(p=vector(2*n-2+bittest(rhs, 0), i, prime(i+firstprime))); sum(i=1, 2^#p-1, sum(j=1, #p, (-1)^bittest(i, j-1)*p[j])==rhs)} \\ For illustrative purpose, too slow for n >> 10. - M. F. Hasler, Aug 08 2015
A022920
Number of solutions to c(1)*prime(4) + ... + c(n)*prime(n+3) = 2, where c(i) = +-1 for i > 1, c(1) = 1.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 1, 0, 7, 0, 12, 0, 61, 0, 131, 0, 472, 0, 2039, 0, 5924, 0, 21095, 0, 76058, 0, 274023, 0, 1032989, 0, 3694643, 0, 12987172, 0, 48417270, 0, 174274092, 0, 642785629, 0, 2402825962, 0, 8918414212, 0, 32868915523, 0, 123145191037, 0
Offset: 1
Cf.
A022894,
A022895,
A022896 (r.h.s. = 0, 1 & 2, using all primes),
A083309 and
A022897 -
A022899 (using primes >= 3),
A022900 -
A022902 (using primes >=5),
A022903,
A022904 (r.h.s. = 0 & 1, using primes >= 7);
A261061 -
A261063 &
A261045 (r.h.s. = -1);
A261057,
A261059,
A261060 &
A261044 (r.h.s. = -2).
-
b[n_, s_, p_] := b[n, s, p] = If[n <= s, If[s == p, Boole[n == s], b[Abs[n - p], s - p, NextPrime[p - 1, -1]] + b[n + p, s - p, NextPrime[p - 1, -1] ]], If[s <= 0, b[Abs[s], Sum[Prime[i], {i, p + 1, p + n - 1}], Prime[p + n - 1]]]] /. Null -> 0; a[n_] := b[n, 2 - Prime[4], 4]; Array[a, 50] (* Jean-François Alcover, Feb 14 2018, after M. F. Hasler *)
-
A022920(n)={my(p=vector(n-1,i,prime(i+4)));sum(i=1,2^(n-1),sum(j=1,#p,(1-bittest(i,j-1)<<1)*p[j],7)==2)} \\ For illustrative purpose; too slow for n >> 20. - M. F. Hasler, Aug 08 2015
-
a(n, s=2-prime(4), p=4)=if(n<=s, if(s==p, n==s, a(abs(n-p), s-p, precprime(p-1))+a(n+p, s-p, precprime(p-1))), if(s<=0, a(abs(s), sum(i=p+1, p+n-1, prime(i)), prime(p+n-1)))) \\ M. F. Hasler, Aug 09 2015
A113040
Number of solutions to +-p(1)+-p(2)+-...+-p(2n)=1 where p(i) is the i-th prime.
Original entry on oeis.org
1, 1, 3, 6, 16, 45, 138, 439, 1417, 4698, 16021, 55146, 190274, 671224, 2404289, 8535117, 30635869, 110496946, 401422210, 1467402238, 5393176633, 19883249002, 73856531314, 273602448261, 1017563027699, 3803902663467, 14266523388813, 53564969402478
Offset: 1
2 + 3 + 5 - 7 + 11 - 13 = - 2 + 3 + 5 - 7 - 11 + 13 = - 2 + 3 - 5 + 7 + 11 - 13 = 1 so a(3) = 3.
-
A113040:=proc(n) local i,j,p,t; t:= NULL; for j from 2 to 2*n by 2 do p:=1; for i to j do p:=p*(x^(-ithprime(i))+x^(ithprime(i))); od; t:=t,coeff(p,x,1); od; t; end;
# second Maple program:
sp:= proc(n) sp(n):= `if`(n=0, 0, ithprime(n)+sp(n-1)) end:
b := proc(n,i) option remember; `if`(n>sp(i), 0, `if`(i=0, 1,
b(n+ithprime(i), i-1)+ b(abs(n-ithprime(i)), i-1)))
end:
a:= n-> b(1, 2*n):
seq(a(n), n=1..40); # Alois P. Heinz, Aug 05 2012
-
sp[n_] := If[n == 0, 0, Prime[n]+sp[n-1]]; b[n_, i_] := b[n, i] =If[n > sp[i], 0, If[i == 0, 1, b[n+Prime[i], i-1] + b[Abs[n-Prime[i]], i-1]]]; a[n_] := b[1, 2*n]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
A022896
Number of solutions to c(1)*prime(1) + ... + c(n)*prime(n) = 2, where c(i) = +-1 for i > 1, c(1) = 1.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 2, 0, 4, 0, 14, 0, 38, 0, 126, 0, 394, 0, 1290, 0, 4344, 0, 14846, 0, 51068, 0, 178436, 0, 634568, 0, 2261052, 0, 8067296, 0, 29031484, 0, 105251904, 0, 383580180, 0, 1404666680, 0, 5171079172, 0, 19141098744, 0, 71125205900, 0, 263549059326
Offset: 1
a(7) counts these 2 solutions: {2, -3, -5, -7, 11, -13, 17}, {2, 3, 5, 7, -11, 13, -17}.
Cf.
A022894 (r.h.s. = 0),
A022895 (r.h.s. = 1),
A022897, ...,
A022904,
A022920 (using primes >= 7),
A083309;
A261061 -
A261063 and
A261045 (r.h.s. = -1);
A261057,
A261059,
A261060 and
A261044 (r.h.s. = -2);
A113040,
A113041,
A113042. -
M. F. Hasler, Aug 08 2015
-
{f, s} = {1, 2}; Table[t = Map[Prime[# + f - 1] &, Range[2, z]]; Count[Map[Apply[Plus, #] &, Map[t # &, Tuples[{-1, 1}, Length[t]]]], s - Prime[f]], {z, 22}]
(* A022896, a(n) = number of solutions of "sum = s" using Prime(f) to Prime(f+n-1) *)
n = 7; t = Map[Prime[# + f - 1] &, Range[n]]; Map[#[[2]] &, Select[Map[{Apply[Plus, #], #} &, Map[t # &, Map[Prepend[#, 1] &, Tuples[{-1, 1}, Length[t] - 1]]]], #[[1]] == s &]] (* the 2 solutions of using n=7 primes; Peter J. C. Moses, Oct 01 2013 *)
-
A022896(n, rhs=2, firstprime=1)={rhs-=prime(firstprime); my(p=vector(n-1, i, prime(i+firstprime))); !(rhs||#p)+sum(i=1, 2^#p-1, sum(j=1, #p, (-1)^bittest(i, j-1)*p[j])==rhs)} \\ For illustrative purpose, too slow for n >> 20. - M. F. Hasler, Aug 08 2015
-
a(n,s=2-prime(1),p=1)={if(n<=s,if(s==p,n==s,a(abs(n-p),s-p,precprime(p-1))+a(n+p,s-p,precprime(p-1))),if(s<=0,if(n>1,a(abs(s),sum(i=p+1,p+n-1,prime(i)),prime(p+n-1)),!s)))} \\ M. F. Hasler, Aug 09 2015
A022903
Number of solutions to c(1)*prime(4) + ... + c(n)*prime(n+3) = 0, where c(i) = +-1 for i>1, c(1) = 1.
Original entry on oeis.org
0, 0, 0, 1, 0, 0, 0, 0, 0, 6, 0, 9, 0, 61, 0, 131, 0, 486, 0, 2029, 0, 5890, 0, 21127, 0, 75979, 0, 273657, 0, 1032161, 0, 3694665, 0, 12989200, 0, 48409376, 0, 174262116, 0, 642786775, 0, 2402713235, 0, 8918299277, 0, 32868170524, 0, 123143998606, 0
Offset: 1
a(10) counts these 6 solutions: {7, -11, -13, -17, -19, -23, 29, -31, 37, 41}, {7, 11, -13, 17, 19, -23, 29, 31, -37, -41}, {7, 11, -13, 17, 19, 23, -29, -31, 37, -41}, {7, 11, 13, -17, -19, 23, 29, 31, -37, -41}, {7, 11, 13, -17, 19, 23, -29, -31, -37, 41}, {7, 11, 13, 17, -19, -23, 29, -31, 37, -41}.
Cf.
A022894,
A022895, ...,
A022904,
A083309,
A022920 (variants with r.h.s. in {0, 1 or 2}, starting with prime(1), prime(2), prime(3) or prime(4));
A261061 -
A261063 and
A261045 (r.h.s. = -1);
A261057,
A261059,
A261060,
A261045(r.h.s. = -2).
-
A022903 := proc(n)
local a,b,cs,cslen ;
a := 0 ;
for b from 0 to 2^(n-1)-1 do
cs := convert(b,base,2) ;
cslen := nops(cs) ;
if cslen < n-1 then
cs := [op(cs),seq(0,i=1..n-1-cslen)] ;
end if;
if ithprime(4)+add( (-1+2*op(i-4,cs)) *ithprime(i),i=5..n+3) = 0 then
a := a+1 ;
end if;
end do:
a ;
end proc:
for n from 1 do
print(n,A022903(n)) ;
end do: # R. J. Mathar, Aug 06 2015
-
{f, s} = {4, 0}; Table[t = Map[Prime[# + f - 1] &, Range[2, z]]; Count[Map[Apply[Plus, #] &, Map[t # &, Tuples[{-1, 1}, Length[t]]]], s - Prime[f]], {z, 22}]
(* A022903, a(n) = number of solutions of "sum = s" using Prime(f) to Prime(f+n-1) *)
n = 10; t = Map[Prime[# + f - 1] &, Range[n]]; Map[#[[2]] &, Select[Map[{Apply[Plus, #], #} &, Map[t # &, Map[Prepend[#, 1] &, Tuples[{-1, 1}, Length[t] - 1]]]], #[[1]] == s &]] (* the 6 solutions of using n=10 primes; Peter J. C. Moses, Oct 01 2013 *)
-
A022903(n, rhs=0, firstprime=4)={rhs-=prime(firstprime); my(p=vector(n-1, i, prime(i+firstprime))); sum(i=1, 2^#p-1, sum(j=1, #p, (-1)^bittest(i, j-1)*p[j])==rhs)} \\ For illustrative purpose, too slow for n >> 20. - M. F. Hasler, Aug 08 2015
A022897
Number of solutions to c(1)*prime(2) +...+ c(n)*prime(n+1) = 0, where c(i) = +-1 for i > 1, c(1) = 1.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 2, 0, 7, 0, 19, 0, 63, 0, 197, 0, 645, 0, 2172, 0, 7423, 0, 25534, 0, 89218, 0, 317284, 0, 1130526, 0, 4033648, 0, 14515742, 0, 52625952, 0, 191790090, 0, 702333340, 0, 2585539586, 0, 9570549372, 0, 35562602950, 0, 131774529663, 0
Offset: 1
a(8) counts these 2 solutions: {3, 5, -7, 11, 13, 17, -19, -23}, {3, 5, 7, 11, -13, -17, -19, 23}. - _Clark Kimberling_, Oct 01 2013
-
Table[ps = Prime[Range[2, n+1]]; pr = Inner[Times, 2 IntegerDigits[Range[2^(n-1), 2^n - 1], 2, n] - 1, ps, Plus]; Count[pr, 0], {n, 16}] (* T. D. Noe, Sep 30 2013 *)
-
padbin(n, len) = {if (n, b = binary(n), b = [0]); while(length(b) < len, b = concat(0, b);); b;}
a(n) = {nbs = 0; for (i = 2^(n-1), 2^n-1, vec = padbin(i, n); if (sum(k=1, n, if (vec[k], prime(k+1), -prime(k+1))) == 0, nbs++);); nbs;} \\ Michel Marcus, Sep 30 2013
-
A022897(n, rhs=0, firstprime=2)={rhs-=prime(firstprime); my(p=vector(n-1, i, prime(i+firstprime))); sum(i=1, 2^#p-1, sum(j=1, #p, (-1)^bittest(i, j-1)*p[j])==rhs)} \\ For illustrative purpose, too slow for n >> 20. - M. F. Hasler, Aug 08 2015
-
a(n, s=0-3, p=2)=if(n<=s, if(s==p, n==s, a(abs(n-p), s-p, precprime(p-1))+a(n+p, s-p, precprime(p-1))), if(s<=0, a(abs(s), sum(i=p+1, p+n-1, prime(i)), prime(p+n-1)))) \\ M. F. Hasler, Aug 09 2015
A367088
Number of solutions to +- 1 +- 2 +- 3 +- 5 +- 7 +- ... +- prime(n-1) = 0 or 1.
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 3, 6, 7, 12, 19, 32, 53, 90, 156, 276, 493, 878, 1566, 2834, 5146, 9396, 17358, 32042, 59434, 110292, 204332, 380548, 713601, 1342448, 2538012, 4808578, 9043605, 17070234, 32268611, 61271738, 116123939, 220993892, 421000142, 802844420, 1534312896
Offset: 0
Showing 1-8 of 8 results.
Comments