cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A022894 Number of solutions to c(1)*prime(1) +...+ c(2n+1)*prime(2n+1) = 0, where c(i) = +-1 for i > 1, c(1) = 1.

Original entry on oeis.org

0, 1, 1, 2, 5, 13, 39, 122, 392, 1286, 4341, 14860, 51085, 178402, 634511, 2260918, 8067237, 29031202, 105250449, 383579285, 1404666447, 5171065198, 19141008044, 71124987313, 263548339462, 983424096451, 3684422350470, 13818161525284, 51938115653565
Offset: 0

Views

Author

Keywords

Comments

c(1)*prime(1) + ... + c(2n)*prime(2n) = 0 has no solution, because the l.h.s. has an odd number of odd terms and the r.h.s. is even.

Examples

			a(1) = 1 because 2 + 3 - 5 = 0,
a(2) = 1 because 2 - 3 + 5 + 7 - 11 = 0,
a(3) = 2 because
  2 + 3 - 5 - 7 + 11 + 13 - 17 =
  2 + 3 - 5 + 7 - 11 - 13 + 17 = 0.
a(4) = 5 because
  2 - 3 - 5 + 7 + 11 + 13 + 17 - 19 - 23 =
  2 - 3 + 5 - 7 + 11 + 13 - 17 + 19 - 23 =
  2 - 3 + 5 + 7 - 11 - 13 + 17 + 19 - 23 =
  2 - 3 + 5 + 7 - 11 + 13 - 17 - 19 + 23 =
  2 + 3 + 5 - 7 - 11 - 13 + 17 - 19 + 23 = 0
and there are no others up through the ninth prime.
		

Crossrefs

Cf. A113040, A215036, A083309 (sums of odd primes).
Cf. A022895, A022896 (r.h.s. = 1 & 2, using all primes), A083309 and A022897 - A022899 (using primes >= 3), A022900 - A022902 (using primes >=5), A022903, A022904, A022920 (using primes >= 7); A261061 - A261063 & A261045 (r.h.s. = -1); A261057, A261059, A261060 & A261044 (r.h.s. = -2).
Bisection (odd part) of A306443.

Programs

  • Maple
    sp:= proc(n) sp(n):= `if`(n=1, 0, ithprime(n)+sp(n-1)) end:
    b := proc(n,i) option remember; `if`(n>sp(i), 0, `if`(i=1, 1,
            b(n+ithprime(i), i-1)+ b(abs(n-ithprime(i)), i-1)))
         end:
    a:= n-> b(2, 2*n+1):
    seq(a(n), n=0..40);  # Alois P. Heinz, Aug 05 2012
  • Mathematica
    Do[a = Table[ Prime[i], {i, 1, n} ]; c = 0; k = 2^(n - 1); While[k < 2^n, If[ Apply[ Plus, a*(-1)^(IntegerDigits[k, 2] + 1)] == 0, c++ ]; k++ ]; Print[c], {n, 1, 32, 2} ]
  • PARI
    A022894={a(n, s=0-prime(1), p=1)=if(n<=s, if(s==p, n==s, a(abs(n-p), s-p, precprime(p-1))+a(n+p, s-p, precprime(p-1))), if(s<=0, a(abs(s), max(sum(i=p+1, p+(p>1)+2*n, prime(i)),1), prime(p+(p>1)+2*n))))} \\ M. F. Hasler, Aug 09 2015

Formula

Conjecture: limit_{n->oo} a(n)^(1/n) = 4. - Vaclav Kotesovec, Jun 05 2019
a(n) is the constant term in expansion of (1/2) * Product_{k=1..2*n+1} (x^prime(k) + 1/x^prime(k)). - Ilya Gutkovskiy, Jan 25 2024

Extensions

Edited by Robert G. Wilson v, Jan 29 2002
More terms from T. D. Noe, Jan 16 2007
Edited by M. F. Hasler, Aug 09 2015

A083309 a(n) is the number of times that sums 3 +- 5 +- 7 +- 11 +- ... +- prime(2n+1) of the first 2n odd primes is zero. There are 2^(2n-1) choices for the sign patterns.

Original entry on oeis.org

0, 0, 1, 2, 7, 19, 63, 197, 645, 2172, 7423, 25534, 89218, 317284, 1130526, 4033648, 14515742, 52625952, 191790090, 702333340, 2585539586, 9570549372, 35562602950, 131774529663, 491713178890, 1842214901398, 6909091641548
Offset: 1

Views

Author

T. D. Noe, Apr 29 2003

Keywords

Comments

The frequency of each possible sum is computed by the Mathematica program without explicitly computing the individual sums. Let S = 3 + 5 + 7 + ... + prime(2n+1). Because the primes do not grow very fast, it is easy to show that, for n > 2, all even numbers between -S+20 and S-20 occur at least once as a sum.
a(n) is the maximal number of subsets of {prime(2), prime(3), ..., prime(n+1)} that share the same sum. Cf. A025591, A083527.
See A238894 for a more general sequence that looks at all sums formed. - T. D. Noe, Mar 07 2014

Examples

			a(3) = 1 because there is only one sign pattern of the first six odd primes that yields zero: 3 + 5 + 7 - 11 + 13 - 17.
		

Crossrefs

Cf. A022894 (use all primes in the sum), A022895 (r.h.s. = 1), A022896 (r.h.s. = 2), A022897 (interleaved 0 for odd number of terms), ..., A022903 (using primes >= 7), A022904, A022920; A261061 - A261063 and A261044 (r.h.s. = -1); A261057, A261059, A261060, A261045 (r.h.s. = -2).

Programs

  • Mathematica
    d={1, 0, 0, 1}; nMax=32; zeroLst={}; Do[p=Prime[n+1]; d=PadLeft[d, Length[d]+p]+PadRight[d, Length[d]+p]; If[0==Mod[n, 2], AppendTo[zeroLst, d[[(Length[d]+1)/2]]]], {n, 2, nMax}]; zeroLst/2
  • PARI
    A083309(n, rhs=0, firstprime=2)={rhs-=prime(firstprime); my(p=vector(2*n-2+bittest(rhs, 0), i, prime(i+firstprime))); sum(i=1, 2^#p-1, sum(j=1, #p, (-1)^bittest(i, j-1)*p[j])==rhs)} \\ For illustrative purpose, too slow for n >> 10. - M. F. Hasler, Aug 08 2015

Formula

a(n) = A022897(2n). - M. F. Hasler, Aug 08 2015

A022904 Number of solutions to c(1)*prime(4) + ... + c(n)*prime(n+3) = 1, where c(i) = +-1 for i>1, c(1) = 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 3, 0, 1, 0, 6, 0, 32, 0, 110, 0, 252, 0, 1139, 0, 3127, 0, 12743, 0, 39767, 0, 156376, 0, 517381, 0, 1870169, 0, 6786580, 0, 25420402, 0, 90815872, 0, 334621081, 0, 1235976769, 0, 4597232973, 0, 17047065235, 0, 63450750049, 0, 238163814619, 0
Offset: 1

Views

Author

Keywords

Examples

			a(7) counts these 3 solutions: {7, -11, 13, 17, -19, 23, -29}, {7, 11, -13, -17, 19, 23, -29}, {7, 11, 13, -17, -19, -23, 29}.
		

Crossrefs

Programs

  • Maple
    A022904 := proc(n)
        local a,b,cs,cslen ;
        a := 0 ;
        for b from 0 to 2^(n-1)-1 do
            cs := convert(b,base,2) ;
            cslen := nops(cs) ;
            if cslen < n-1 then
                cs := [op(cs),seq(0,i=1..n-1-cslen)] ;
            end if;
            if ithprime(4)+add( (-1+2*op(i-4,cs)) *ithprime(i),i=5..n+3) = 1 then
                a := a+1 ;
            end if;
        end do:
        a ;
    end proc: # R. J. Mathar, Aug 06 2015
  • Mathematica
    {f, s} = {4, 1}; Table[t = Map[Prime[# + f - 1] &, Range[2, z]]; Count[Map[Apply[Plus, #] &, Map[t # &, Tuples[{-1, 1}, Length[t]]]], s - Prime[f]], {z, 22}]
    (* A022904, a(n) = number of solutions of "sum = s" using Prime(f) to Prime(f+n-1) *)
    n = 7; t = Map[Prime[# + f - 1] &, Range[n]]; Map[#[[2]] &, Select[Map[{Apply[Plus, #], #} &, Map[t # &, Map[Prepend[#, 1] &, Tuples[{-1, 1}, Length[t] - 1]]]], #[[1]] == s &]]  (* the 3 solutions of using n=7 primes; Peter J. C. Moses, Oct 01 2013 *)

Formula

a(n) = [x^6] Product_{k=5..n+3} (x^prime(k) + 1/x^prime(k)). - Ilya Gutkovskiy, Jan 30 2024

Extensions

Corrected and extended by Clark Kimberling, Oct 01 2013
a(23)-a(50) from Alois P. Heinz, Aug 06 2015

A261061 Number of solutions to c(1)*prime(1)+...+c(2n)*prime(2n) = -1, where c(i) = +-1 for i > 1, c(1) = 1.

Original entry on oeis.org

1, 0, 2, 3, 8, 23, 68, 221, 709, 2344, 8006, 27585, 95114, 335645, 1202053, 4267640, 15317698, 55248527, 200711160, 733697248, 2696576651, 9941588060, 36928160817, 136800727634, 508780005068, 1901946851732, 7133247301621, 26782446410398, 100862459737318
Offset: 1

Views

Author

M. F. Hasler, Aug 08 2015

Keywords

Comments

There cannot be a solution for an odd number of terms on the l.h.s. because there would be an even number of odd terms but the r.h.s. is odd.

Examples

			a(1) = 1 counts the solution prime(1) - prime(2) = -1.
a(2) = 0 because prime(1) +- prime(2) +- prime(3) +- prime(4) is always different from -1.
a(3) = 2 counts the two solutions prime(1) - prime(2) + prime(3) - prime(4) - prime(5) + prime(6) = -1 and prime(1) - prime(2) - prime(3) + prime(4) + prime(5) - prime(6) = -1.
		

Crossrefs

Cf. A261062 - A261063 and A261044 (starting with prime(2), prime(3) resp. prime(4)), A022894 - A022904, A083309, A022920 (r.h.s. = 0, 1 or 2), A261057, A261059, A261060, A261045 (r.h.s. = -2).

Programs

  • Maple
    s:= proc(n) option remember;
          `if`(n<2, 0, ithprime(n)+s(n-1))
        end:
    b:= proc(n, i) option remember; `if`(n>s(i), 0, `if`(i=1, 1,
          b(abs(n-ithprime(i)), i-1)+b(n+ithprime(i), i-1)))
        end:
    a:= n-> b(3, 2*n):
    seq(a(n), n=1..30);  # Alois P. Heinz, Aug 08 2015
  • Mathematica
    s[n_] := s[n] = If[n<2, 0, Prime[n]+s[n-1]]; b[n_, i_] := b[n, i] = If[n > s[i], 0, If[i == 1, 1, b[Abs[n-Prime[i]], i-1] + b[n+Prime[i], i-1]]]; a[n_] := b[3, 2*n]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
  • PARI
    A261061(n,rhs=-1,firstprime=1)={rhs-=prime(firstprime);my(p=vector(2*n-2+bittest(rhs,0),i,prime(i+firstprime)));sum(i=1,2^#p-1,sum(j=1,#p,(-1)^bittest(i,j-1)*p[j])==rhs)} \\ For illustrative purpose; too slow for n >> 10.

Formula

Conjecture: limit_{n->infinity} a(n)^(1/n) = 4. - Vaclav Kotesovec, Jun 05 2019
a(n) = [x^3] Product_{k=2..2*n} (x^prime(k) + 1/x^prime(k)). - Ilya Gutkovskiy, Jan 31 2024

Extensions

a(14)-a(29) from Alois P. Heinz, Aug 08 2015

A261045 Number of solutions to c(1)*prime(4) + c(2)*prime(5) + ... + c(2n-1)*prime(2n+2) = -1, where c(i) = +-1 for i>1, c(1) = 1.

Original entry on oeis.org

0, 0, 0, 1, 2, 5, 32, 93, 261, 1082, 3253, 12307, 40809, 153392, 525417, 1892876, 6847161, 25256461, 91268129, 335852960, 1239350769, 4606651034, 17073491494, 63523866957, 237953442636, 892247156886, 3346127378391, 12603121634857, 47642071407103
Offset: 1

Views

Author

M. F. Hasler, Aug 08 2015

Keywords

Comments

There cannot be a solution for an even number of terms on the l.h.s. because they are all odd and the r.h.s. is odd, too.

Crossrefs

Cf. A261057 (starting with prime(1)), A261059 (starting with prime(2)), A261060 (starting with prime(3)), A261061 - A261063 and A261044 (r.h.s. = -1), A022894 -A022904, A083309, A022920 (r.h.s. = 0, 1 or 2).

Programs

  • Maple
    s:= proc(n) option remember;
          `if`(n<5, 0, ithprime(n)+s(n-1))
        end:
    b:= proc(n, i) option remember; `if`(n>s(i), 0, `if`(i=4, 1,
          b(abs(n-ithprime(i)),i-1)+b(n+ithprime(i),i-1)))
        end:
    a:= n-> b(8, 2*n+2):
    seq(a(n), n=1..30);  # Alois P. Heinz, Aug 08 2015
  • Mathematica
    s[n_] := s[n] = If[n<5, 0, Prime[n]+s[n-1]]; b[n_, i_] := b[n, i] = If[n > s[i], 0, If[i == 4, 1, b[Abs[n-Prime[i]], i-1] + b[n+Prime[i], i-1]]]; a[n_] := b[8, 2*n+2]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
  • PARI
    a(n)={my(p=vector(2*n-2,i,prime(i+4)));sum(i=1,2^(2*n-2),sum(j=1,#p,(1-bittest(i,j-1)<<1)*p[j],7)==-1)} \\ For illustrative purpose; too slow for n >> 10. - M. F. Hasler, Aug 08 2015

Extensions

a(13)-a(29) from Alois P. Heinz, Aug 08 2015

A261057 Number of solutions to c(1)*prime(1)+...+c(2n-1)*prime(2n-1) = -2, where c(i) = +-1 for i > 1, c(1) = 1.

Original entry on oeis.org

0, 0, 1, 1, 5, 13, 40, 123, 388, 1284, 4332, 14868, 51094, 178361, 634422, 2260717, 8066841, 29030051, 105247340, 383574146, 1404657053, 5171018981, 19140750300, 71124341227, 263546155710, 983417309702, 3684399940711, 13818092760075, 51937827473594, 195956606402526
Offset: 1

Views

Author

M. F. Hasler, Aug 08 2015

Keywords

Comments

There cannot be a solution for an even number of terms on the l.h.s. because there would be an odd number of odd terms but the r.h.s. is even.

Examples

			a(1) = a(2) = 0 because prime(1) and prime(1) +- prime(2) +- prime(3) is always different from -2.
a(3) = 1 because prime(1) - prime(2) - prime(3) - prime(4) + prime(5) = -2.
		

Crossrefs

Cf. A261059, A261060, A261045 (starting with prime(2) - prime(4)), A261061 - A261063 and A261044 (r.h.s. = -1), A022894 - A022904, A083309, A022920 (r.h.s. = 0, 1 or 2); A113040, A113041, A113042.

Programs

  • Maple
    s:= proc(n) option remember;
          `if`(n<2, 0, ithprime(n)+s(n-1))
        end:
    b:= proc(n, i) option remember; `if`(n>s(i), 0, `if`(i=1, 1,
          b(abs(n-ithprime(i)),i-1)+b(n+ithprime(i),i-1)))
        end:
    a:= n-> b(4, 2*n-1):
    seq(a(n), n=1..30);  # Alois P. Heinz, Aug 08 2015
  • Mathematica
    s[n_] := s[n] = If[n<2, 0, Prime[n]+s[n-1]]; b[n_, i_] := b[n, i] = If[n > s[i], 0, If[i == 1, 1, b[Abs[n-Prime[i]], i-1] + b[n+Prime[i], i-1]]]; a[n_] := b[4, 2*n-1];  Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
  • PARI
    A261057(n,rhs=-2,firstprime=1)={rhs-=prime(firstprime);my(p=vector(2*n-2+bittest(rhs,0),i,prime(i+firstprime)));sum(i=1,2^#p-1,sum(j=1,#p,(-1)^bittest(i,j-1)*p[j])==rhs)} \\ For illustrative purpose; too slow for n >> 10.
    
  • PARI
    a(n, s=-2-prime(1), p=1)={if(n<=s, if(s==p, n==s, a(abs(n-p), s-p, precprime(p-1))+a(n+p, s-p, precprime(p-1))), if(s<=0, a(abs(s), max(sum(i=p+1, p+=2*n-2+bittest(s,0), prime(i)),1), prime(p))))} \\ M. F. Hasler, Aug 09 2015

Formula

a(n) = A113041(n) - A022896(2n-1).
a(n) = [x^4] Product_{k=2..2*n-1} (x^prime(k) + 1/x^prime(k)). - Ilya Gutkovskiy, Jan 31 2024

Extensions

a(26)-a(30) from Alois P. Heinz, Jan 04 2019

A261063 Number of solutions to c(1)*prime(3) + ... + c(2n-1)*prime(2n+1) = -1, where c(i) = +-1 for i > 1, c(1) = 1.

Original entry on oeis.org

0, 0, 0, 1, 6, 8, 40, 67, 373, 1232, 3330, 13656, 47111, 164957, 582042, 1967152, 7129046, 26655235, 94956602, 353789267, 1300061367, 4765080122, 17726643505, 66038899483, 245431428625, 919911458949, 3457983108462, 12974054097333, 49016641868213, 185510228030858
Offset: 1

Views

Author

M. F. Hasler, Aug 08 2015

Keywords

Comments

There cannot be a solution for an even number of terms on the l.h.s. because all terms are odd but the r.h.s. is odd, too.

Examples

			a(1) = a(2) = 0 because prime(3) and prime(3) +- prime(4) +- prime(5) are different from -1 for any choice of the signs.
a(3) = 0 because the same sums prime(3) +- ... +- prime(7) is also always different from -1 for any choice of the signs.
a(4) = 1 because prime(3) - prime(4) - prime(5) - prime(6) - prime(7) + prime(8) + prime(9) = -1 is the only solution.
		

Crossrefs

Cf. A261061 - A261062 (starting with prime(1) resp. prime(2)), A261044 (starting with prime(4)), A022894 - A022904, A083309, A022920 (r.h.s. = 0, 1 or 2), A261057, A261059, A261060, A261045 (r.h.s. = -2).

Programs

  • Maple
    s:= proc(n) option remember;
          `if`(n<4, 0, ithprime(n)+s(n-1))
        end:
    b:= proc(n, i) option remember; `if`(n>s(i), 0, `if`(i=3, 1,
          b(abs(n-ithprime(i)),i-1)+b(n+ithprime(i),i-1)))
        end:
    a:= n-> b(6, 2*n+1):
    seq(a(n), n=1..30);  # Alois P. Heinz, Aug 08 2015
  • Mathematica
    s[n_] := s[n] = If[n<4, 0, Prime[n]+s[n-1]]; b[n_, i_] := b[n, i] = If[n > s[i], 0, If[i == 3, 1, b[Abs[n-Prime[i]], i-1] + b[n+Prime[i], i-1]]]; a[n_] := b[6, 2*n+1]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
  • PARI
    A261063(n,rhs=-1,firstprime=3)={rhs-=prime(firstprime);my(p=vector(2*n-2+bittest(rhs,0),i,prime(i+firstprime)));sum(i=1,2^#p-1,sum(j=1,#p,(-1)^bittest(i,j-1)*p[j])==rhs)} \\ For illustrative purpose; too slow for n >> 10.

Formula

a(n) = [x^6] Product_{k=4..2*n+1} (x^prime(k) + 1/x^prime(k)). - Ilya Gutkovskiy, Jan 31 2024

Extensions

a(15)-a(30) from Alois P. Heinz, Aug 08 2015

A261059 Number of solutions to c(1)*prime(2)+...+c(2n)*prime(2n+1) = -2, where c(i) = +-1 for i > 1, c(1) = 1.

Original entry on oeis.org

1, 0, 2, 1, 4, 25, 47, 237, 562, 1965, 7960, 24148, 85579, 307569, 1104519, 4106381, 14710760, 52113647, 193181449, 698356631, 2574590311, 9600573372, 35644252223, 131545038705, 492346772797, 1843993274342, 6903884199622, 25984680496124, 97937400336407
Offset: 1

Views

Author

M. F. Hasler, Aug 08 2015

Keywords

Comments

There cannot be a solution for an odd number of terms on the l.h.s. because all terms are odd but the r.h.s. is even.

Examples

			a(1) = 1 because prime(2) - prime(3) = -2.
a(2) = 0 because prime(2) +- prime(3) +- prime(4) +- prime(5) is different from -2 for any choice of the signs.
a(3) = 2 counts the 2 solutions prime(2) - prime(3) + prime(4) - prime(5) - prime(6) + prime(7) = -2 and prime(2) - prime(3) - prime(4) + prime(5) + prime(6) - prime(7) = -2.
		

Crossrefs

Cf. A261057 (starting with prime(1)), A261060 (starting with prime(3)), A261045 (starting with prime(4)), A261061 - A261063 and A261044 (r.h.s. = -1), A022894 - A022904, A083309, A022920 (r.h.s. = 0, 1 or 2), .

Programs

  • Maple
    s:= proc(n) option remember;
          `if`(n<3, 0, ithprime(n)+s(n-1))
        end:
    b:= proc(n, i) option remember; `if`(n>s(i), 0, `if`(i=2, 1,
          b(abs(n-ithprime(i)),i-1)+b(n+ithprime(i),i-1)))
        end:
    a:= n-> b(5, 2*n+1):
    seq(a(n), n=1..30);  # Alois P. Heinz, Aug 08 2015
  • Mathematica
    s[n_] := s[n] = If[n<3, 0, Prime[n]+s[n-1]]; b[n_, i_] := b[n, i] = If[n > s[i], 0, If[i == 2, 1, b[Abs[n-Prime[i]], i-1] + b[n+Prime[i], i-1]]];  a[n_] := b[5, 2*n+1]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
  • PARI
    A261059(n,rhs=-2,firstprime=2)={rhs-=prime(firstprime);my(p=vector(2*n-2+bittest(rhs,0),i,prime(i+firstprime)));sum(i=1,2^#p-1,sum(j=1,#p,(-1)^bittest(i,j-1)*p[j])==rhs)} \\ For illustrative purpose; too slow for n >> 10.
    
  • PARI
    a(n,s=-2-3,p=2)=if(n<=s,if(s==p,n==s,a(abs(n-p),s-p,precprime(p-1))+a(n+p,s-p,precprime(p-1))),if(s<=0,a(abs(s),sum(i=p+1,p+2*n-1,prime(i)),prime(p+n*2-1))))

Formula

a(n) = [x^5] Product_{k=3..2*n+1} (x^prime(k) + 1/x^prime(k)). - Ilya Gutkovskiy, Jan 31 2024

Extensions

a(15)-a(29) from Alois P. Heinz, Aug 08 2015

A261060 Number of solutions to c(1)*prime(3) + ... + c(2n)*prime(2n+2) = -2, where c(i) = +-1 for i > 1, c(1) = 1.

Original entry on oeis.org

1, 0, 2, 1, 9, 22, 38, 143, 676, 1815, 7434, 22452, 87485, 290873, 1092072, 3894381, 13988849, 49672279, 184745525, 677809709, 2495632892, 9260315018, 34280441347, 127419049587, 474867366809, 1781565475308, 6700749901259, 25230023849115, 95215110677472
Offset: 1

Views

Author

M. F. Hasler, Aug 08 2015

Keywords

Comments

There cannot be a solution for an odd number of terms on the l.h.s. because all terms are odd but the r.h.s. is even.

Examples

			a(1) = 1 because prime(3) - prime(4) = -2.
a(2) = 0 because prime(3) +- prime(4) +- prime(5) +- prime(6) is different from -2 for any choice of the signs.
a(3) = 2 counts the two solutions prime(3) - prime(4) + prime(5) - prime(6) - prime(7) + prime(8) = 5 - 7 + 11 - 13 - 17 + 19 = -2 and prime(3) - prime(4) - prime(5) + prime(6) + prime(7) - prime(8) = 5 - 7 - 11 + 13 + 17 - 19 = -2.
		

Crossrefs

Cf. A261057, A261059 and A261045 (starting with prime(1), prime(2) and prime(4)), A261061 - A261063 and A261044 (r.h.s. = -1), A022894 - A022904, A083309, A022920 (r.h.s. = 0, 1 or 2).

Programs

  • Maple
    s:= proc(n) option remember;
          `if`(n<4, 0, ithprime(n)+s(n-1))
        end:
    b:= proc(n, i) option remember; `if`(n>s(i), 0, `if`(i=3, 1,
          b(abs(n-ithprime(i)),i-1)+b(n+ithprime(i),i-1)))
        end:
    a:= n-> b(7, 2*n+2):
    seq(a(n), n=1..30);  # Alois P. Heinz, Aug 08 2015
  • Mathematica
    s[n_] := s[n] = If[n<4, 0, Prime[n]+s[n-1]]; b[n_, i_] := b[n, i] = If[n > s[i], 0, If[i == 3, 1, b[Abs[n-Prime[i]], i-1]+b[n+Prime[i], i-1]]];  a[n_] := b[7, 2*n+2]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)
  • PARI
    a(n,rhs=-2,firstprime=3)={rhs-=prime(firstprime);my(p=vector(2*n-2+bittest(rhs,0),i,prime(i+firstprime)));sum(i=1,2^#p-1,sum(j=1,#p,(-1)^bittest(i,j-1)*p[j])==rhs)} \\ For illustrative purpose; too slow for n >> 10.

Formula

a(n) = [x^7] Product_{k=4..2*n+2} (x^prime(k) + 1/x^prime(k)). - Ilya Gutkovskiy, Jan 31 2024

Extensions

a(14)-a(29) from Alois P. Heinz, Aug 08 2015

A113040 Number of solutions to +-p(1)+-p(2)+-...+-p(2n)=1 where p(i) is the i-th prime.

Original entry on oeis.org

1, 1, 3, 6, 16, 45, 138, 439, 1417, 4698, 16021, 55146, 190274, 671224, 2404289, 8535117, 30635869, 110496946, 401422210, 1467402238, 5393176633, 19883249002, 73856531314, 273602448261, 1017563027699, 3803902663467, 14266523388813, 53564969402478
Offset: 1

Views

Author

Floor van Lamoen, Oct 12 2005

Keywords

Comments

+-p(1)+-p(2)+-...+-p(2n+1)=1 has no solutions because the l.h.s. is even.

Examples

			2 + 3 + 5 - 7 + 11 - 13 = - 2 + 3 + 5 - 7 - 11 + 13 = - 2 + 3 - 5 + 7 + 11 - 13 = 1 so a(3) = 3.
		

Crossrefs

Bisection (even part) of A306443.

Programs

  • Maple
    A113040:=proc(n) local i,j,p,t; t:= NULL; for j from 2 to 2*n by 2 do p:=1; for i to j do p:=p*(x^(-ithprime(i))+x^(ithprime(i))); od; t:=t,coeff(p,x,1); od; t; end;
    # second Maple program:
    sp:= proc(n) sp(n):= `if`(n=0, 0, ithprime(n)+sp(n-1)) end:
    b := proc(n,i) option remember; `if`(n>sp(i), 0, `if`(i=0, 1,
            b(n+ithprime(i), i-1)+ b(abs(n-ithprime(i)), i-1)))
         end:
    a:= n-> b(1, 2*n):
    seq(a(n), n=1..40);  # Alois P. Heinz, Aug 05 2012
  • Mathematica
    sp[n_] := If[n == 0, 0, Prime[n]+sp[n-1]]; b[n_, i_] := b[n, i] =If[n > sp[i], 0, If[i == 0, 1, b[n+Prime[i], i-1] + b[Abs[n-Prime[i]], i-1]]]; a[n_] := b[1, 2*n]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)

Formula

a(n) = A022895(2n) + A261061(n). - M. F. Hasler, Aug 09 2015
Conjecture: limit_{n->infinity} a(n)^(1/n) = 4. - Vaclav Kotesovec, Jun 05 2019
a(n) = [x^1] Product_{k=1..2*n} (x^prime(k) + 1/x^prime(k)). - Ilya Gutkovskiy, Jan 25 2024
Showing 1-10 of 19 results. Next