cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261064 a(n) = (3^n-1)*(n+1)/4.

Original entry on oeis.org

1, 6, 26, 100, 363, 1274, 4372, 14760, 49205, 162382, 531438, 1727180, 5580127, 17936130, 57395624, 182948560, 581130729, 1840247318, 5811307330, 18305618100, 57531942611, 180441092746, 564859072956, 1765184603000, 5507375961373, 17157594341214, 53379182394902
Offset: 1

Views

Author

R. J. Mathar, Aug 08 2015

Keywords

Comments

Second column of A201730.
Number of non-selfintersecting broken lines in a convex (n+1)-gon. (National Math Contest "Atanas Radev" 2020, Bulgaria) - Ivaylo Kortezov, Jan 18 2020

Crossrefs

Programs

  • Magma
    [(3^n-1)*(n+1)/4: n in [1..30]]; // Vincenzo Librandi, Aug 31 2016
  • Mathematica
    LinearRecurrence[{8, -22, 24, -9}, {1, 6, 26, 100}, 30] (* Vincenzo Librandi, Aug 31 2016 *)
    Table[(3^n - 1)(n + 1)/4, {n, 0, 39}] (* Alonso del Arte, Jan 19 2020 *)
  • PARI
    first(m)=vector(m,i, (3^i-1)*(i+1)/4); /* Anders Hellström, Aug 08 2015 */
    

Formula

G.f.: -x*(-1 + 2*x) / ( (3*x - 1)^2*(x - 1)^2 ).
a(n) = A212337(n - 1) - 2*A212337(n - 2).
a(n) = Sum_{k = 1..n} A027907(n, 2k - 1)*k . - J. Conrad, Aug 30 2016
a(n) = Sum_{k = 0..(n - 1)} binomial(n + 1, k + 2)*A001792(k). - Ivaylo Kortezov, Jan 21 2020
E.g.f.: exp(x)*(exp(2*x)*(1 + 3*x) - x - 1)/4. - Stefano Spezia, May 14 2024