cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A261181 Primes that contain only the digits (0, 7, 9).

Original entry on oeis.org

7, 79, 97, 709, 797, 907, 977, 997, 7079, 7907, 9007, 9907, 70009, 70079, 70099, 70709, 70979, 70997, 70999, 77797, 77977, 77999, 79777, 79907, 79979, 79997, 79999, 90007, 90709, 90907, 90977, 90997, 97007, 97777, 99079, 99707, 99709, 99907, 700079
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2015

Keywords

Comments

A020471 is a subsequence.

Crossrefs

Cf. Primes that contain only the digits (k,7,9): this sequence (k=0), A260893 (k=1), A261182 (k=2), A260382 (k=3), A261183 (k=4), A260831 (k=5), A261184 (k=6), A106110 (k=8).

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^5) | Set(Intseq(p)) subset [0, 7, 9]];
  • Mathematica
    Select[Prime[Range[6 10^4]], Complement[IntegerDigits[#], {0, 7, 9}] == {} &]
    Select[FromDigits/@Tuples[{0,7,9},6],PrimeQ] (* Harvey P. Dale, Aug 09 2024 *)

A386075 Primes having only {0, 4, 7, 9} as digits.

Original entry on oeis.org

7, 47, 79, 97, 409, 449, 479, 499, 709, 797, 907, 947, 977, 997, 4007, 4049, 4079, 4099, 4409, 4447, 4799, 4909, 4999, 7079, 7477, 7499, 7907, 7949, 9007, 9049, 9479, 9497, 9749, 9907, 9949, 40009, 40099, 40499, 40709, 40949, 44449, 44497, 44777, 44797, 44909
Offset: 1

Views

Author

Jason Bard, Jul 16 2025

Keywords

Crossrefs

Supersequence of A261181, A261183, A384449, A385768.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 4, 7, 9]];
    
  • Mathematica
    Select[FromDigits /@ Tuples[{0, 4, 7, 9}, n], PrimeQ]
  • PARI
    primes_with(, 1, [0, 4, 7, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0479"), 41))) # uses function/imports in A385776
    

A386127 Primes having only {1, 4, 7, 9} as digits.

Original entry on oeis.org

7, 11, 17, 19, 41, 47, 71, 79, 97, 149, 179, 191, 197, 199, 419, 449, 479, 491, 499, 719, 797, 911, 919, 941, 947, 971, 977, 991, 997, 1117, 1171, 1447, 1471, 1499, 1741, 1747, 1777, 1949, 1979, 1997, 1999, 4111, 4177, 4441, 4447, 4799, 4919, 4999, 7177, 7411
Offset: 1

Views

Author

Jason Bard, Jul 17 2025

Keywords

Crossrefs

Supersequence of A079651, A260271, A260893, A261183.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 4, 7, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 4, 7, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 4, 7, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1479"), 41))) # uses function/imports in A385776
    

A386158 Primes having only {2, 4, 7, 9} as digits.

Original entry on oeis.org

2, 7, 29, 47, 79, 97, 227, 229, 277, 449, 479, 499, 727, 797, 929, 947, 977, 997, 2297, 2447, 2477, 2729, 2749, 2777, 2797, 2927, 2999, 4229, 4297, 4447, 4729, 4799, 4999, 7229, 7247, 7297, 7477, 7499, 7727, 7927, 7949, 9227, 9277, 9479, 9497, 9749, 9929, 9949
Offset: 1

Views

Author

Jason Bard, Jul 18 2025

Keywords

Crossrefs

Supersequence of A261182, A261183, A385784, A385785.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [2, 4, 7, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{2, 4, 7, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [2, 4, 7, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("2479"), 41))) # uses function/imports in A385776
    

A386191 Primes having only {4, 5, 7, 9} as digits.

Original entry on oeis.org

5, 7, 47, 59, 79, 97, 449, 457, 479, 499, 547, 557, 577, 599, 757, 797, 947, 977, 997, 4447, 4457, 4547, 4549, 4597, 4759, 4799, 4957, 4999, 5449, 5477, 5479, 5557, 5749, 5779, 7457, 7459, 7477, 7499, 7547, 7549, 7559, 7577, 7757, 7759, 7949, 9479, 9497, 9547
Offset: 1

Views

Author

Jason Bard, Jul 18 2025

Keywords

Crossrefs

Supersequence of A217039, A260831, A261183, A385793.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [4, 5, 7, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{4, 5, 7, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [4, 5, 7, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("4579"), 41))) # uses function/imports in A385776
    

A386194 Primes having only {4, 6, 7, 9} as digits.

Original entry on oeis.org

7, 47, 67, 79, 97, 449, 467, 479, 499, 647, 677, 769, 797, 947, 967, 977, 997, 4447, 4649, 4679, 4799, 4967, 4969, 4999, 6449, 6469, 6679, 6779, 6947, 6949, 6967, 6977, 6997, 7477, 7499, 7649, 7669, 7699, 7949, 9467, 9479, 9497, 9649, 9677, 9679, 9697, 9749, 9767
Offset: 1

Views

Author

Jason Bard, Jul 18 2025

Keywords

Crossrefs

Supersequence of A107666, A261183, A261184, A385794.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [4, 6, 7, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{4, 6, 7, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [4, 6, 7, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("4679"), 41))) # uses function/imports in A385776
    

A386195 Primes having only {4, 7, 8, 9} as digits.

Original entry on oeis.org

7, 47, 79, 89, 97, 449, 479, 487, 499, 787, 797, 877, 887, 947, 977, 997, 4447, 4787, 4789, 4799, 4877, 4889, 4987, 4999, 7477, 7487, 7489, 7499, 7789, 7877, 7879, 7949, 8447, 8747, 8779, 8849, 8887, 8999, 9479, 9497, 9749, 9787, 9887, 9949, 44449, 44497, 44777
Offset: 1

Views

Author

Jason Bard, Jul 18 2025

Keywords

Crossrefs

Supersequence of A106110, A261183, A385795, A385796.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [4, 7, 8, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{4, 7, 8, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [4, 7, 8, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("4789"), 41))) # uses function/imports in A385776
    
Showing 1-7 of 7 results.