cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A261181 Primes that contain only the digits (0, 7, 9).

Original entry on oeis.org

7, 79, 97, 709, 797, 907, 977, 997, 7079, 7907, 9007, 9907, 70009, 70079, 70099, 70709, 70979, 70997, 70999, 77797, 77977, 77999, 79777, 79907, 79979, 79997, 79999, 90007, 90709, 90907, 90977, 90997, 97007, 97777, 99079, 99707, 99709, 99907, 700079
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2015

Keywords

Comments

A020471 is a subsequence.

Crossrefs

Cf. Primes that contain only the digits (k,7,9): this sequence (k=0), A260893 (k=1), A261182 (k=2), A260382 (k=3), A261183 (k=4), A260831 (k=5), A261184 (k=6), A106110 (k=8).

Programs

  • Magma
    [p: p in PrimesUpTo(2*10^5) | Set(Intseq(p)) subset [0, 7, 9]];
  • Mathematica
    Select[Prime[Range[6 10^4]], Complement[IntegerDigits[#], {0, 7, 9}] == {} &]
    Select[FromDigits/@Tuples[{0,7,9},6],PrimeQ] (* Harvey P. Dale, Aug 09 2024 *)

A386083 Primes having only {0, 6, 7, 9} as digits.

Original entry on oeis.org

7, 67, 79, 97, 607, 677, 709, 769, 797, 907, 967, 977, 997, 6007, 6067, 6079, 6607, 6679, 6709, 6779, 6907, 6967, 6977, 6997, 7069, 7079, 7607, 7669, 7699, 7907, 9007, 9067, 9677, 9679, 9697, 9767, 9769, 9907, 9967, 60077, 60607, 60679, 60779, 66067, 66697, 66797
Offset: 1

Views

Author

Jason Bard, Jul 16 2025

Keywords

Crossrefs

Supersequence of A261181, A261184, A385770.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 6, 7, 9]];
    
  • Mathematica
    Select[FromDigits /@ Tuples[{0, 6, 7, 9}, n], PrimeQ]
  • PARI
    primes_with(, 1, [0, 6, 7, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0679"), 41))) # uses function/imports in A385776
    

A386136 Primes having only {1, 6, 7, 9} as digits.

Original entry on oeis.org

7, 11, 17, 19, 61, 67, 71, 79, 97, 167, 179, 191, 197, 199, 617, 619, 661, 677, 691, 719, 761, 769, 797, 911, 919, 967, 971, 977, 991, 997, 1117, 1171, 1619, 1667, 1669, 1697, 1699, 1777, 1979, 1997, 1999, 6197, 6199, 6619, 6661, 6679, 6691, 6719, 6761, 6779
Offset: 1

Views

Author

Jason Bard, Jul 17 2025

Keywords

Crossrefs

Supersequence of A260891, A260893, A261184, A363023.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [1, 6, 7, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{1, 6, 7, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [1, 6, 7, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("1679"), 41))) # uses function/imports in A385776
    

A386166 Primes having only {2, 6, 7, 9} as digits.

Original entry on oeis.org

2, 7, 29, 67, 79, 97, 227, 229, 269, 277, 677, 727, 769, 797, 929, 967, 977, 997, 2267, 2269, 2297, 2677, 2699, 2729, 2767, 2777, 2797, 2927, 2969, 2999, 6229, 6269, 6277, 6299, 6679, 6779, 6967, 6977, 6997, 7229, 7297, 7669, 7699, 7727, 7927, 9227, 9277, 9629
Offset: 1

Views

Author

Jason Bard, Jul 18 2025

Keywords

Crossrefs

Supersequence of A261182, A261184, A385787, A385788.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [2, 6, 7, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{2, 6, 7, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [2, 6, 7, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("2679"), 41))) # uses function/imports in A385776
    

A386185 Primes having only {3, 6, 7, 9} as digits.

Original entry on oeis.org

3, 7, 37, 67, 73, 79, 97, 337, 367, 373, 379, 397, 673, 677, 733, 739, 769, 773, 797, 937, 967, 977, 997, 3373, 3637, 3673, 3677, 3697, 3733, 3739, 3767, 3769, 3779, 3793, 3797, 3967, 6337, 6367, 6373, 6379, 6397, 6637, 6673, 6679, 6733, 6737, 6763, 6779, 6793
Offset: 1

Views

Author

Jason Bard, Jul 18 2025

Keywords

Crossrefs

Supersequence of A260380, A260382, A261184.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [3, 6, 7, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{3, 6, 7, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [3, 6, 7, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("3679"), 41))) # uses function/imports in A385776
    

A386194 Primes having only {4, 6, 7, 9} as digits.

Original entry on oeis.org

7, 47, 67, 79, 97, 449, 467, 479, 499, 647, 677, 769, 797, 947, 967, 977, 997, 4447, 4649, 4679, 4799, 4967, 4969, 4999, 6449, 6469, 6679, 6779, 6947, 6949, 6967, 6977, 6997, 7477, 7499, 7649, 7669, 7699, 7949, 9467, 9479, 9497, 9649, 9677, 9679, 9697, 9749, 9767
Offset: 1

Views

Author

Jason Bard, Jul 18 2025

Keywords

Crossrefs

Supersequence of A107666, A261183, A261184, A385794.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [4, 6, 7, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{4, 6, 7, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [4, 6, 7, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("4679"), 41))) # uses function/imports in A385776
    

A386197 Primes having only {5, 6, 7, 9} as digits.

Original entry on oeis.org

5, 7, 59, 67, 79, 97, 557, 569, 577, 599, 659, 677, 757, 769, 797, 967, 977, 997, 5557, 5569, 5657, 5659, 5669, 5779, 6569, 6577, 6599, 6659, 6679, 6779, 6959, 6967, 6977, 6997, 7559, 7577, 7669, 7699, 7757, 7759, 9677, 9679, 9697, 9767, 9769, 9967, 55579, 55667
Offset: 1

Views

Author

Jason Bard, Jul 18 2025

Keywords

Crossrefs

Supersequence of A260829, A260831, A261184, A385797.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [5, 6, 7, 9]];
    
  • Mathematica
    Flatten[Table[Select[FromDigits /@ Tuples[{5, 6, 7, 9}, n], PrimeQ], {n, 7}]]
  • PARI
    primes_with(, 1, [5, 6, 7, 9]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("5679"), 41))) # uses function/imports in A385776
    
Showing 1-7 of 7 results.