cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A048553 a(n+1) is next smallest prime beginning with a(n), initial prime is 11.

Original entry on oeis.org

11, 113, 11311, 113111, 1131113, 11311133, 1131113353, 113111335313, 11311133531339, 113111335313399, 1131113353133993, 113111335313399321, 11311133531339932153, 1131113353133993215379, 113111335313399321537911
Offset: 0

Views

Author

Patrick De Geest, May 15 1999

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n)
      local p, d;
      for d from 1 do
        p:= nextprime(n*10^d);
        if p < (n+1)*10^d then return p fi
      od
    end proc:
    A[1]:= 11:
    for n from 2 to 20 do A[n]:= f(A[n-1]) od:
    seq(A[n], n=1..20); # Robert Israel, Aug 16 2015
  • Mathematica
    a = {11}; Do[k = 1; w = IntegerDigits[a[[n - 1]]];
    While[CompositeQ@ FromDigits[Join[w, IntegerDigits@ k]], k += 2];
    AppendTo[a, FromDigits[Join[w, IntegerDigits@ k]]], {n, 2, 15}]; a (* Michael De Vlieger, Sep 21 2015 *)

A055011 a(n+1) = next smallest prime beginning with a(n) when written in binary, starting with 2.

Original entry on oeis.org

2, 5, 11, 23, 47, 191, 383, 3067, 12269, 196307, 6281839, 50254717, 201018869, 804075479, 1608150959, 102921661397, 1646746582367, 13173972658937, 105391781271503, 210783562543007, 3372537000688127, 26980296005505019, 863369472176160611, 6906955777409284889
Offset: 0

Views

Author

Henry Bottomley, May 31 2000

Keywords

Comments

a(5)=191 because a(4)=47 which in binary is 101111, none of 1011110(94) 1011111(95) 10111100(188) 10111101(189) 10111110 (190) are prime, but 10111111(191) is.

Crossrefs

Cf. A048549 for base 10 analog.
A055011, A261200 and A261201 are all essentially the same sequence.

Programs

  • Haskell
    a055011 n = a055011_list !! n
    a055011_list = iterate a208241 2  -- Reinhard Zumkeller, Feb 14 2013
  • Maple
    A055011 := proc(n)
        option remember;
        if n = 0 then
            2 ;
        else
            A208241(procname(n-1)) ;
        end if;
    end proc: # R. J. Mathar, May 06 2017

Formula

a(n+1) = A208241(a(n)). - Reinhard Zumkeller, Feb 14 2013

A261200 Minimal prime concatenation sequence with base 2 and seed 1.

Original entry on oeis.org

1, 10, 101, 1011, 10111, 101111, 10111111, 101111111, 101111111011, 10111111101101, 101111111011010011, 10111111101101001101111, 10111111101101001101111101, 1011111110110100110111110101, 101111111011010011011111010111, 1011111110110100110111110101111
Offset: 1

Views

Author

Clark Kimberling, Sep 16 2015

Keywords

Examples

			In base 2, the least prime starting with seed 1 is 10; the least prime starting with 10 is 101; the least prime starting with 101 is 1011. Triangular format:
1
10
101
1011
10111
101111
10111111
101111111
101111111011
		

Crossrefs

A055011, A261200 and A261201 are all essentially the same sequence.

Programs

  • Mathematica
    b = 2; s = {{1}};
    Do[NestWhile[# + 1 &, 0, ! (PrimeQ[FromDigits[tmp = Join[Last[s], (nn = #; IntegerDigits[nn - Sum[b^n, {n, l = NestWhile[# + 1 &, 1, ! (nn - (Sum[b^n, {n, #}]) < 0) &] - 1}], b, l + 1])], b]]) &];
    AppendTo[s, tmp], {30}]; Map[FromDigits, s]
    Map[FromDigits, s] (* A261200 *)
    Map[FromDigits[#, b] &, s] (* A261201 *)
    (* Peter J. C. Moses, Aug 06 2015 *)

A261270 Base-10 representation of A261269.

Original entry on oeis.org

3, 7, 29, 59, 239, 479, 3833, 30671, 61343, 981493, 3925973, 62815573, 502524587, 2010098351, 16080786809, 1029170355779, 4116681423119, 65866902769909, 263467611079637, 2107740888637103, 134895416872774619, 17266613359715151259, 1105063255021769680613
Offset: 1

Views

Author

Clark Kimberling, Sep 17 2015

Keywords

Crossrefs

Cf. A261269.

Programs

  • Mathematica
    b = 2; s = {{1}}; Do[NestWhile[# + 1 &, 0, ! (PrimeQ[FromDigits[tmp = Join[Last[s],(nn = #; IntegerDigits[nn - Sum[b^n, {n, l = NestWhile[# + 1 &, 1, ! (nn - (Sum[b^n, {n, #}]) < 0) &] - 1}], b, l + 1])], b]]) &]; AppendTo[s, tmp], {30}]; Map[FromDigits, s]; Map[FromDigits, s] (* A261200 *)
    Map[FromDigits[#, b] &, s] (* A261201 *)
    (* Peter J. C. Moses, Aug 06 2015 *)
Showing 1-4 of 4 results.